24 research outputs found

    Magnetic field and unstable accretion during AM Herculis low states

    Get PDF
    A study of AM Her low states in September 1990 and 1991 and June-July 1997 is reported from a coordinated campaign with observations obtained at the Haute-Provence observatory, at the 6-m telescope of the Special Astrophysical Observatory and at the 2.6m and 1.25m telescopes of the Crimean observatory. Spectra obtained at different dates when the source was in low states at a comparable V magnitude, show the presence of strong Zeeman absorption features and marked changes in emission lines with a day-to-day reappearance of the HeII (4686\AA) emission lines in 1991. Despite this variability, the magnetic field inferred from the fitting of the absorption spectrum with Zeeman hydrogen splitting, is remarkably constant with a best value of (12.5±\pm0.5)MG. Detailed analysis of the UBVRI light curves shows the presence of repetitive moderate amplitude (∌\sim 0.3-0.5 mag) flares predominantly red in colour. These flares are attributed to small accretion events and are compared to the large (∌\sim 2 mag.) blue flare reported by Shakhovskoy et al. (1993). We suggest that the general flaring activity observed during the low states is generated by accretion events. The different characteristics of the flares (colour and polarization) are the results of different shock geometries depending on the net mass accretion flux.Comment: accepted in Astronomy & Astrophysics (Main Journal), 10 pages, 6 Figures, Late

    Implications of the PSR 1257+12 Planetary System for Isolated Millisecond Pulsars

    Get PDF
    The first extrasolar planets were discovered in 1992 around the millisecond pulsar PSR 1257+12. We show that recent developments in the study of accretion onto magnetized stars, plus the existence of the innermost, moon-sized planet in the PSR 1257+12 system, suggest that the pulsar was born with approximately its current rotation frequency and magnetic moment. If so, this has important implications for the formation and evolution of neutron star magnetic fields as well as for the formation of planets around pulsars. In particular, it suggests that some and perhaps all isolated millisecond pulsars may have been born with high spin rates and low magnetic fields instead of having been recycled by accretion.Comment: 17 pages including one figure, uses aaspp4, accepted by Ap

    White Dwarfs Near Black Holes: A New Paradigm for Type I Supernovae

    Full text link
    We present calculations indicating the possibility of a new class of Type I supernovae. In this new paradigm relativistic terms enhance the self gravity of a carbon-oxygen white dwarf as it passes or orbits near a black hole. This relativistic compression can cause the central density to exceed the threshold for pycnonuclear reactions so that athermonuclear runaway ensues. We consider three possible environments: 1) white dwarfs orbiting a low-mass black hole; 2) white dwarfs encountering a massive black hole in a dense globular cluster; and 3) white dwarfs passing a supermassive black hole in a dense galactic core. We estimate the rate at which such events could occur out to a redshift of z = 1. Event rates are estimated to be significantly less than the rate of normal Type Ia supernovae for all three classes. Nevertheless, such events may be frequent enough to warrant a search for this new class of supernova. We propose several observable signatures which might be used to identify this type of event and speculate that such an event might have produced the observed "mixed-morphology" Sgr A East supernova remnant in the Galactic core.Comment: Accepted for Publication in The Astrophysical Journa

    Expected coalescence rates of NS-NS binaries for laser beam interferometers

    Full text link
    The coalescence rate of two neutron stars (NS) is revisited. For estimation of the number of bound NS-NS and the probability of their coalescence in a timescale τ\tau, the galactic star formation history, directly derived from observations, and the evolution of massive stars are considered. The newly established galactic merging rate is (1.7±1.0)×10−5yr−1(1.7\pm 1.0) \times 10^{-5} yr^{-1}, while the local merging rate, including the contribution of elliptical galaxies, is about a factor of two higher, 3.4×10−5yr−13.4 \times 10^{-5} yr^{-1}. Using the present data basis on galaxy distribution in the local universe and the expected sensitivity of the first generation of laser beam interferometers, we estimate that one event should occur every 125 years for LIGO and one event each 148 years for VIRGO. The situation is considerably improved for advanced-LIGO since we predict that 6 events per year should be detected whereas for a recently proposed VIRGO new configuration, the event rate might increase up to 3 events every two years.Comment: 15 pages, 3 figures accepted for publication in IJMP

    Aperiodic optical variability of intermediate polars - cataclysmic variables with truncated accretion disks

    Full text link
    We study the power spectra of the variability of seven intermediate polars containing magnetized asynchronous accreting white dwarfs, XSS J00564+4548,IGR J00234+6141, DO Dra, V1223 Sgr, IGR J15094-6649, IGR J16500-3307 and IGR J17195-4100, in the optical band and demonstrate that their variability can be well described by a model based on fluctuations propagating in a truncated accretion disk. The power spectra have breaks at Fourier frequencies, which we associate with the Keplerian frequency of the disk at the boundary of the white dwarfs' magnetospheres. We propose that the properties of the optical power spectra can be used to deduce the geometry of the inner parts of the accretion disk, in particular: 1) truncation radii of the magnetically disrupted accretion disks in intermediate polars, 2) the truncation radii of the accretion disk in quiescent states of dwarf novaeComment: Accepted for publication in A&

    Superhumps in Cataclysmic Binaries. XXIII. V442 Ophiuchi and RX J1643.7+3402

    Full text link
    We report the results of long observing campaigns on two novalike variables: V442 Ophiuchi and RX J1643.7+3402. These stars have high-excitation spectra, complex line profiles signifying mass loss at particular orbital phases, and similar orbital periods (respectively 0.12433 and 0.12056 d). They are well-credentialed members of the SW Sex class of cataclysmic variables. Their light curves are also quite complex. V442 Oph shows periodic signals with periods of 0.12090(8) and 4.37(15) days, and RX J1643.7+3402 shows similar signals at 0.11696(8) d and 4.05(12) d. We interpret these short and long periods respectively as a "negative superhump" and the wobble period of the accretion disk. The superhump could then possibly arise from the heating of the secondary (and structures fixed in the orbital frame) by inner-disk radiation, which reaches the secondary relatively unimpeded since the disk is not coplanar. At higher frequencies, both stars show another type of variability: quasi-periodic oscillations (QPOs) with a period near 1000 seconds. Underlying these strong signals of low stability may be weak signals of higher stability. Similar QPOs, and negative superhumps, are quite common features in SW Sex stars. Both can in principle be explained by ascribing strong magnetism to the white dwarf member of the binary; and we suggest that SW Sex stars are borderline AM Herculis binaries, usually drowned by a high accretion rate. This would provide an ancestor channel for AM Hers, whose origin is still mysterious.Comment: PDF, 41 pages, 4 tables, 16 figures; accepted, in press, to appear December 2002, PASP; more info at http://cba.phys.columbia.edu

    On the Change of the Inner Boundary of an Optically Thick Accretion Disk around White Dwarfs Using the Dwarf Nova SS Cyg as an Example

    Full text link
    We present the results of our studies of the aperiodic optical flux variability for SS Cyg, an accreting binary systemwith a white dwarf. The main set of observational data presented here was obtained with the ANDOR/iXon DU-888 photometer mounted on the RTT-150 telescope, which allowed a record(for CCD photometers) time resolution up to 8 ms to be achieved. The power spectra of the source's flux variability have revealed that the aperiodic variability contains information about the inner boundary of the optically thick flow in the binary system. We show that the inner boundary of the optically thick accretion disk comes close to the white dwarf surface at the maximum of the source's bolometric light curve, i.e., at the peak of the instantaneous accretion rate onto the white dwarf, while the optically thick accretion disk is truncated at distances 8.5e9 cm ~10 R_{WD} in the low state. We suggest that the location of the inner boundary of the accretion disk in the binary can be traced by studying the parameters of the power spectra for accreting white dwarfs. In particular, this allows the mass of the accreting object to be estimated.Comment: 9 pages, 7 figures, Published in Astronomy Letter

    A model for the population of helium stars in the Galaxy I. Low-mass stars

    Full text link
    By means of population synthesis we model the Galactic ensemble of helium stars. It is assumed that all helium stars are formed in binaries. Under this assumption, single helium stars are produced by the mergers of helium remnants of components of close binaries (mainly, by merging helium white dwarfs) and by disruption of binaries with helium components in supernovae explosions. The estimate of the total birthrate of helium stars in the Galaxy is 0.043 yr−1^{-1}, their total number is estimated as 4×1064 \times 10^6. The rate of binarity in the total sample is 76%. We construct a subsample of low-mass (M_{\rm He} \lesssim 2 \ms) helium stars limited by observational selection effects: stellar magnitude (VHe≀16V_{\rm He} \leq 16), ratio of stellar magnitudes of components in binaries (VHe≀VcompV_{\rm He}\leq V_{\rm comp}), lower limit of the semiamplitude of radial velocity that is necessary for discovery of binarity (Kmin=30K_{min}=30 km/s). The parameters of this ``observable'' sample are in satisfactory agreement with the parameters of the observed ensemble of sdB stars. In particular, in the selection-limited sample binarity rate is 58%. We analyze the relations between orbital periods and masses of helium stars and their companions in systems with different combinations of components. We expect that overwhelming majority (∌90\sim 90%) of unobserved components in binary sdB stars are white dwarfs, predominantly, carbon-oxygen ones.Comment: 16 pages, 6 figures, submitted to Astronomy Reports, fig. 6 corrected, conclusions unchange

    Evolution of the number of accreting white dwarfs with shell nuclear burning and of occurrence rate of SN Ia

    Full text link
    We analyze temporal evolution of the number of accreting white dwarfs with shell hydrogen burning in semidetached and detached binaries. We consider a stellar system in which star formation lasts for 10 Gyr with a constant rate, as well as a system in which the same amount of stars is formed in a single burst lasting for 1 Gyr. Evolution of the number of white dwarfs is confronted to the evolution of occurrence rate of events that usually are identified with SN Ia or accretion-induced collapses, i.e. with accumulation of Chandrasekhar mass by a white dwarf or a merger of a pair of CO white dwarfs with total mass not lower than the Chandrasekhar one. In the systems with a burst of star formation, at t=t=10 Gyr observed supersoft X-ray sources, most probably, are not precursors of SN Ia. The same is true for an overwhelming majority of the sources in the systems with constant star formation rate. In the systems of both kinds mergers of white dwarfs is the dominant SN Ia scenario. In symbiotic binaries, accreting CO-dwarfs do not accumulate enough mass for SN Ia explosion, while ONeMg-dwarfs finish their evolution by an accretion-induced collapse with formation of a neutron star.Comment: 11 pages, 2 figures, accepted by Astronomy Letter

    Population Synthesis for Neutron Star Systems with Intrinsic Kicks

    Get PDF
    We use a Monte Carlo binary synthesis code to model the formation and evolution of neutron star systems including high-mass X-ray binaries, low-mass X-ray binaries, double neutron star systems and radio pulsars. Our focus is on the signature imprinted on such systems due to natal kicks to neutron stars over and above that imparted by orbital motions. The code incorporates the effect of the galactic potential (including rotation) on the velocities of these systems. A comparison between our models and the observations leads us to infer mean natal kicks between 400-500 km/s. Moreover, to be consistent with all the data, we require a bimodal kick distribution with one peak in the distribution near 0 km/s and the other above 600 km/s.Comment: 41 pages total, 24 text+tables pages, 17 figures, AASTeX, Accepted for publication in Ap
    corecore