409 research outputs found

    Fabrication of Nano-Scale Gaps in Integrated Circuits

    Full text link
    Nano-size objects like metal clusters present an ideal system for the study of quantum phenomena and for constructing practical quantum devices. Integrating these small objects in a macroscopic circuit is, however, a difficult task. So far the nanoparticles have been contacted and addressed by highly sophisticated techniques which are not suitable for large scale integration in macroscopic circuits. We present an optical lithography method that allows for the fabrication of a network of electrodes which are separated by gaps of controlled nanometer size. The main idea is to control the gap size with subnanometer precision using a structure grown by molecular beam epitaxy.Comment: 4 pages, 3 figure

    Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS 'giant-shell' nanocrystals

    Get PDF
    Colloidal nanocrystals (NCs) are attractive materials for light-emitting applications thanks to their flexible synthesis, size-dependent properties, and bright emission. Yet, colloidal NCs still present a narrow gain band (full-width half maximum around 10 nm), which limits their application to single-color lasers. Widening of the gain band by specifically engineered NCs can further improve the prospect of this class of materials toward the fabrication of solution-processed white-emitting or color-tunable lasers. Here, we report broadband amplified spontaneous emission (ASE) from wurtzite CdSe/CdS "giant-shell" nanocrystals (g-NCs) with an unprecedented large core up to 7.5 nm in diameter that were synthesized through a continuous injection route. The combination of large core and shell enables ASE from different CdSe optical transitions as well as from the CdS. Importantly, thin films of g-NCs with a large CdSe core (7.5 and 5.1 nm in diameter) show ASE at different colors with a similar threshold, indicating that light emission amplification can be achieved from different optical transitions simultaneously. Tuning of the core diameter allows obtaining ASE in a wide spectral range, and blending of g-NCs with different core sizes gives rise to a continuous amplified spontaneous emission band from green to red (510 to 650 nm). Drop-cast films of CdSe/CdS g-NCs demonstrate simultaneous dual-color random lasing under nanosecond-pulsed excitation

    Electrical plasmon detection in graphene waveguides

    Get PDF
    We present a simple device architecture that allows all-electrical detection of plasmons in a graphene waveguide. The key principle of our electrical plasmon detection scheme is the non-linear nature of the hydrodynamic equations of motion that describe transport in graphene at room temperature and in a wide range of carrier densities. These non-linearities yield a dc voltage in response to the oscillating field of a propagating plasmon. For illustrative purposes, we calculate the dc voltage arising from the propagation of the lowest-energy modes in a fully analytical fashion. Our device architecture for all-electrical plasmon detection paves the way for the integration of graphene plasmonic waveguides in electronic circuits.Comment: 9 pages, 3 figure

    Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide

    Get PDF
    PbS nanocrystals are an important narrow-gap material for solar cells and photodetectors. Nevertheless, their application may be limited because device performance can be affected by atmospheric conditions. Indeed, the presence of oxygen and/or water can degrade the active layers, possibly leading to device failure. Strategies to address this issue are therefore actively explored. Here we report a solution-processed PbS quantum dot solar cell, consisting of a PbS-silane functionalized reduced graphene oxide (PbS-rGO) layer on top of the PbS absorber film, which enhances device stability, especially when the solar cells are exposed to moisture. Power conversion efficiency (PCE) measurements demonstrate a slower degradation under continuous illumination for solar cells with PbS-rGO. When storing the samples under saturated water vapor, differences are even more remarkable: with PbS-rGO the solar cells essentially maintain their initial PCE, while the PCE of the PbS reference devices is reduced by 50% after 5 days. Scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy reveal the damage to the PbS films and the formation of PbSOX crystals in the PbS reference devices. Such crystals are not observed in the PbS-rGO devices, further supporting the importance of the PbSrGO barrier layer

    Far-Infrared Excitations below the Kohn Mode: Internal Motion in a Quantum Dot

    Full text link
    We have investigated the far-infrared response of quantum dots in modulation doped GaAs heterostructures. We observe novel modes at frequencies below the center-of-mass Kohn mode. Comparison with Hartree-RPA calculations show that these modes arise from the flattened potential in our field-effect confined quantum dots. They reflect pronounced relative motion of the charge density with respect to the center-of-mass.Comment: 8 pages, LaTeX with integrated 6 PostScript figure
    corecore