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Electrical plasmon detection in graphene waveguides
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We present a simple device architecture that allows all-electrical detection of plasmons in a graphene waveguide.
The key principle of our electrical plasmon detection scheme is the nonlinear nature of the hydrodynamic equations
of motion that describe transport in graphene at room temperature and in a wide range of carrier densities. These
nonlinearities yield a dc voltage in response to the oscillating field of a propagating plasmon. For illustrative
purposes, we calculate the dc voltage arising from the propagation of the lowest-energy modes in a fully analytical
fashion. Our device architecture for all-electrical plasmon detection paves the way for the integration of graphene
plasmonic waveguides in electronic circuits.
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Introduction. The two-dimensional (2D) electron liquid in
a doped graphene sheet [1] supports plasmons with energies
from the far infrared to the visible, depending on carrier con-
centration [2]. Although they share similarities with plasmons
in ordinary parabolic-band 2D electron liquids [3], plasmons in
graphene are profoundly different. From a fundamental point
of view, their dispersion relation is sensitive to many-body
effects even in the long-wavelength limit [4]. More practically,
plasmons in graphene are easily accessible to surface-science
probes and optoelectrical manipulation since they are exposed
and not buried in a quantum well.

Plasmons in graphene are also substantially different
from those in noble metals. Indeed, recent near-field opti-
cal spectroscopy experiments [5–9] have demonstrated that
plasmons in graphene display gate tunability and ultrastrong
field confinement. Moreover, low damping rates can be
achieved by employing graphene samples encapsulated in
hexagonal boron nitride thin slabs [9–12]. For these reasons,
graphene plasmonics has recently attracted a great deal of
interest [13]. Graphene plasmons may allow for new classes of
devices for single-plasmon nonlinearities [14], extraordinarily
strong light-matter interactions [15], deep subwavelength
metamaterials [16–19], and photodetectors with enhanced
sensitivity [20,21].

A key ingredient of a disruptive plasmonic platform is
the ability to efficiently detect plasmons in all-electrical
manners. Some progress has been made in this direction in
conventional noble-metal-based plasmonics. Falk et al. [22],
for example, were able to couple plasmons in Ag nanowires
to nanowire Ge field-effect transistors. Built-in electric fields
in the latter are used to separate electrons and holes before
recombination, thereby giving rise to a measurable source-
drain current. Similarly, Neutens et al. [23] employed an
integrated metal-semiconductor-metal detector in a metal-
insulator-metal plasmon waveguide.

While graphene plasmons have been detected and studied
in a multitude of ways [13], including electron energy loss
spectroscopy [24], polarized Fourier transform infrared spec-
troscopy [16], and near-field optical spectroscopy [5–9], a pro-
tocol for all-electrical detection of these modes is still lacking.
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In this Rapid Communication we present a device architec-
ture that allows all-electrical detection of plasmons in graphene
waveguides. In our scheme, all-electrical detection is not
enabled by the integration of a detector in a graphene plasmon
waveguide (GPW) but rather by the intrinsic nonlinear terms in
the hydrodynamic equations that describe transport in the 2D
massless Dirac fermion (MDF) liquid [1] hosted by graphene.
Nonlinearities enable the emergence of a rectified (i.e., dc)
component δV (r) of the ac electric field of a propagating
plasmon, which can be measured by a suitable geometry of
ohmic contacts placed along the GPW, as shown in Fig. 1. We
now present a calculation of the spatially dependent electrical
signal δV (r).

Hydrodynamic theory. We consider a GPW with transverse
(longitudinal) size W (L with L � W ), which is embedded
between two insulators with dielectric constants ε1 (above
the GPW) and ε2 (below the GPW). Here, “longitudinal” and
“transverse” refer to the plasmon propagation direction—x̂ in
Fig. 1.

We would like to describe ac transport in a GPW by
employing the theory of hydrodynamics [25]. We therefore
need to assess whether experimentally relevant regions of
parameter space exist in which this theory is applicable. First,
at room temperature and for typical carrier densities (n̄ �
1011 cm−2–5 × 1012 cm−2), the mean free path �ee = vFτee

for electron-electron collisions in graphene is short [26,27],
i.e., �ee � 100–150 nm. Here, vF � 106 m/s is the graphene
Fermi velocity [28] and τee � 100 fs = 10−13 s is the electron-
electron collision time [26,27]. Second, for hydrodynamics
to provide a correct description of the response of the system
at finite frequencies, it must also be ωτee � 1, where ω is the
external-excitation angular frequency. The value of τee given
above constrains the maximum external-excitation frequency
to be fmax ≡ 1/(2πτee) � 3 THz. We therefore conclude that,
for n̄ � 1011 cm−2–5 × 1012 cm−2, ω < 2πfmax, and T =
300 K, transport in GPWs with characteristic dimensions
L,W � �ee is accurately described by hydrodynamic
equations of motion [25]. Related continuum-model
descriptions of plasmons in GPWs have been employed in
Refs. [29–32].

The set of hydrodynamic equations consists of (i) the
continuity equation,

∂tn(r,t) + ∇ · [n(r,t)v(r,t)] = 0, (1)
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FIG. 1. (Color online) Schematics of our electrical plasmon de-
tector. A graphene strip of width W is encapsulated between
two dielectrics (semitransparent slab above and dark green slab
underneath graphene). A back gate (dark blue slab), separated by
a distance d from the graphene sheet and held at a voltage VG, is used
to control the average carrier density n̄ in graphene. At one end of the
strip, a plasmon is launched by using, e.g., a metallized atomic force
microscope tip illuminated by light [5–9]. Due to nonlinearities in
the hydrodynamic equations, a dc electrical potential difference δV

is measured between probe electrodes placed at positions r1, r2, and
r3 and a reference electrode placed at the other end of the strip. The
quantity δV provides a direct measurement of the ac electric field of
a propagating plasmon.

and (ii) the Navier-Stokes equation [25]

mcn(r,t)Dtv(r,t) = −en(r,t)E(r,t) + η∇2v(r,t). (2)

In Eqs. (1) and (2), n(r,t) is the carrier density and v(r,t) is
the drift velocity. In Eq. (2), mc = �

√
πn̄/vF is the graphene

cyclotron mass [28], with n̄ = CVG/e the average electron
density and VG the back-gate voltage (see Fig. 1), and Dt ≡
∂t + v(r,t) · ∇ is the convective derivative [25]. The electric
field E(r,t) = −∇
(r,t) is the gradient of the electrostatic
potential 
(r,t) (we neglect retardation effects). Finally, η is
the shear viscosity of the 2D electron liquid [3,25]. For future
purposes, we also introduce the kinematic viscosity [25]

ν ≡ η

n̄mc
. (3)

It can be shown [33] that, in the hydrodynamic ωτee � 1 limit,
ν � v2

Fτee/4. With the values of vF and τee given above, we find
ν � 250 cm2/s. In writing Eq. (2) we have neglected a term
due to the bulk viscosity ζ since this quantity vanishes at long
wavelengths [3,25].

We highlight two nonlinear terms in Eqs. (1) and (2): (a)
the nonlinear coupling between n(r,t) and v(r,t), which is
present in Eq. (1), and (b) the nonlinear term [v(r,t) · ∇]v(r,t)
in Eq. (2), representing the convective acceleration [25].

Momentum-nonconserving collisions, such as those due to
the friction of the electron liquid against the disorder potential,
can be taken into account phenomenologically by adding a
term of the type −mcγ n(r,t)v(r,t) on the right-hand side
of Eq. (2), where γ is a damping rate [34]. Furthermore,
corrections to Eq. (2), stemming from the pseudorelativistic
nature of MDF flow in graphene, can be easily incorporated
into the theory [35,36] and have been demonstrated to yield
stronger rectified signals [35].

Finally, to close the set of equations, we need a relation
between 
(r,t) and n(r,t). This depends on the screening

exerted by dielectrics and conductors near the GPW. If a metal
gate is positioned underneath the GPW at a distance d �
W,k−1, where k is the plasmon wave vector, the following
local relation exists [35]:


(r,t) ≈ − e

C
δn(r,t), (4)

where C = ε2/(4πd) is a capacitance per unit area and
δn(r,t) ≡ n(r,t) − n̄. Equation (4) greatly simplifies the the-
oretical analysis and, in fact, allows us to solve the problem in
a fully analytical fashion [37], as we now detail.

Equations (1)–(4) need to be accompanied by boundary
conditions. As explained in Sec. I of Ref. [38] and in
Ref. [39], we fix vy(x,y = 0,W ) = 0 and ∂xvy(x,y = 0,W ) +
∂yvx(x,y = 0,W ) = 0.

Linear response theory and plasmons. The GPW supports
collective charge density oscillations, i.e., plasmons [3],
which propagate along the x̂ direction and are confined
in the ŷ direction. To calculate the frequency spectrum
and potential profiles of these modes we have to linearize
Eqs. (1), (2), and (4). We write n(r,t) = n̄ + n1(r,t) +
n2(r,t) + . . ., v(r,t) = v1(r,t) + v2(r,t) + . . ., and 
(r,t) =

1(r,t) + 
2(r,t) + . . .. Here n1(r,t), v1(r,t), and 
1(r,t)
[n2(r,t), v2(r,t), and 
2(r,t)] denote first-order (second-
order) corrections with respect to equilibrium values (by
“equilibrium” we here mean the state of the GPW in which a
plasmon is not propagating). In the linearized theory we retain
only terms of the first order. All the relevant details are reported
in Secs. II and III of Ref. [38].

For the sake of simplicity, we assume a uniform equilibrium
electron density in the GPW, disregarding the well-known
inhomogeneous doping n̄ → n̄(y) that arises due to a back
gate. Plasmons in back-gated waveguides, however, have been
demonstrated [40] to be similar to those of uniformly doped
waveguides, provided that the Fermi energy is appropriately
scaled to compensate for the singular behavior of the carrier
density n̄(y) as y → 0,W .

Plasmon modes are labeled by a wave number k (stemming
from translational invariance along the x̂ direction) and a
discrete index n = 0,1,2, . . . . The associated ac electrical
potential is given by


1(r,t) = ϕn(y)eikx−iωn(k)t , (5)

where

ϕn(y) = 1√
W

{
1, for n = 0,√

2 cos[nπy/W ], for n 
= 0.
(6)

The mode dispersion reads as

ωn(k) =
√

s2K2
n −

(
γ + νK2

n

)2

4
− i

γ + νK2
n

2
, (7)

where K2
n = k2 + q2

n , qn ≡ πn/W , and s =
√

e2n̄/(Cmc) is
the hydrodynamic speed of sound. It is useful to introduce the
following natural frequency scale: �0 ≡ s/W . Setting external
(γ ) and internal (ν) dissipation to zero in Eq. (7) we find the
expected result, ωn(k) = sKn. The lowest-energy n = 0 mode
shows an acoustic dispersion due to screening by the back
gate. Modes with n 
= 0 are gapped, i.e., ωn(k → 0) = nπ�0.
The fundamental frequency is ωn=1/(2π ) = �0/2 � 1.0 THz
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FIG. 2. (Color online) (a) Dispersion relation fn(k) ≡
ωn(k)/(2π ) of four low-energy plasmon modes (n = 0, . . . ,3)
in a GPW with the following parameters: W = 3 μm, d = 100 nm,
ε2 = 3.9, n̄ = 1012 cm−2, γ = 0.3�0, and ν = 250 cm2/s.
Solid (dashed) lines correspond to even (odd) modes. (b)–(e)
Corresponding electrical potential profiles 
1(r,t) evaluated at
x = 0 and t = 0 and plotted as functions of the transverse y ∈ [0,W ]
coordinate. These results have been obtained by imposing electron
density fluctuations equal to [41] δn/n̄ = 1%.

for W = 3 μm, d = 100 nm, ε2 = 3.9, and n̄ = 1012 cm−2.
Dispersion relations and mode profiles for the above set of
parameters are shown in Fig. 2. In the approximation (4) the
results do not depend on ε1.

When the nth eigenmode of the GPW is excited by an
external perturbation with frequency ω, it propagates with a
complex wave number,

kn(ω) =
√

ω2 + iωγ

s2 − iνω
− q2

n. (8)

The wave number, Re (kn), and inverse damping ratio,
γ −1

n ≡ Re (kn)/Im (kn), of the launched plasmon depend only
on the excitation frequency ω and not on details of the tip-
sample coupling [5–9]. Physically, the dimensionless number
γ −1

n controls the plasmon extinction length �n ≡ 1/Im (kn) =
γ −1

n λn/(2π ), with λn = 2π/Re (kn) the plasmon wavelength.
With the value of ν given above and γ = 0.3�0, the inverse
damping ratio of the n = 0 mode is γ −1

0 � 23, while γ −1
1 � 7

for n = 1.
Second-order theory of all-electrical detection. The recti-

fied signal can be calculated by keeping track of the second-
order terms n2(r,t), v2(r,t), and 
2(r,t) in the expansion
of the hydrodynamic variables. Physically, the second-order
response describes interactions between propagating modes.
If only one mode propagates, a dc signal due to self-mixing
of the plasmon field is generated. If more than one mode
propagates, also interference terms will be generated. On

general grounds [42], we expect that the second-order response
is composed by an oscillating component at frequency 2ω

(i.e., second-harmonic generation) and a steady component.
Since we are interested in detecting a dc signal, we can extract
the rectified voltage δV (r) from the time average over one
period of the external radiation of the second-order potential
fluctuations: δV (r) ≡ 〈
2(r,t)〉. Averaging over time the
second-order equations we obtain [38]

∇ · δv(r) = −1

n̄
∇ · 〈n1(r,t)v1(r,t)〉 (9)

and

− e

mc
∇δV (r) + γ δv(r) − ν∇2δv(r)

= −ε〈[v1(r,t) · ∇]v1(r,t)〉 − ν

n̄
〈n1(r,t)∇2v1(r,t)〉, (10)

where δv ≡ 〈v2(r,t)〉 is the time average of the velocity
fluctuations. We urge the reader to note that in Eq. (10) we
have introduced a dimensionless parameter ε which allows
us to keep track of the role of different nonlinearities in
determining the rectified signal. By setting ε = 0 one neglects
the convective nonlinearity in the Navier-Stokes equation.
Moreover, by setting ε = 0 and ν = 0, the Navier-Stokes
equation reduces to the linearized Euler equation [25], which
leads to the standard Drude formula for the local conductivity.
However, a finite rectified signal δV (r) exists in this case, too,
and is entirely due to the nonlinear n(r,t)v(r,t) coupling in
the continuity equation.

Equations (9) and (10) are crucial since they relate the
second-order quantities δV and δv to the quantities n1(r,t) and
v1(r,t), which have been calculated in the linearized theory.
Furthermore, they can be used to calculate the dc signal δV (r)
in response to plasmon propagation in any desired geometry.
As stated above, δV (r) can be measured by employing a set
of ohmic contacts as in Fig. 1.

We now evaluate δV (r) for the experimentally relevant
case in which plasmons are launched at a specific location
r� = (0,y�) with y� ∈ [0,W ] in the GPW. The quantity δV (r)
for x � W and arbitrary y can then be calculated according
to the following procedure, which is typical of a scattering
problem. (a) For x � W the plasmon velocity field can be
written as a sum over propagating modes [i.e., modes with
ωn(k) < ω, where ω is the angular frequency of the stimulus
that launches plasmons]. All the other modes, which can be
excited near r�, exponentially damp out at large distances since
they have a purely imaginary k—see Eq. (8). Furthermore, as
shown in Sec. III of Ref. [38], the plasmon velocity field v1

is irrotational at large distances, i.e., ∇ × v1 = 0 for x � W .
Since ∇ × ∇φ(r) ≡ 0 for an arbitrary scalar function φ(r), we
conclude that v1(r,t) for x � W can be written as the gradient
of a scalar function. In the language of scattering theory, we
have built the so-called asymptotic solution, which we denote
by v

(a)
1 (r,t). (b) Let us imagine that an external perturbation

with frequency ω launches, for example, an arbitrary linear
combination with complex coefficients of the n = 0 and n = 1
GPW modes. Because of (a), we can write the corresponding
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FIG. 3. (Color online) (a) The dc potential δV (r) (in millivolts)
as a function of x (in μm), calculated at the edges of the GPW, i.e.,
at y = 0 (solid, dashed, and dotted lines) and y = W (dashed-dotted
line). These numerical results have been calculated by setting the
following parameter values in Eq. (11): ξ = 0 and α = 0 (solid line),
ξ = 1 and α = 0 (dashed line), ξ = 1/2 and α = π/4 (dotted and
dashed-dotted lines). The other parameters are as in Fig. 2. Finally,
we have taken ω/(2π ) � 1.2 THz in Eq. (8). Note that ω/(2π ) is
20% larger than the fundamental frequency for the laser to be able to
excite the two lowest modes of the GPW. The scale is in millivolts.
In all cases the value of A has been chosen to yield δn/n̄ = 1%. This
normalization implies different values of A for different values of
ξ,α. (b) Spatial map of the dc potential δV (r) calculated by setting
ξ = 1/2 and α = π/4. The color bar shows the potential amplitude
in millivolts. All other parameters are as in (a).

asymptotic velocity field as

v
(a)
1 (r,t) = A

2
∇[(1 − ξ )ϕ0(y)eik̄0xe−β0x

+ ξeiαϕ1(y)eik̄1xe−β1x]e−iωt + c.c., (11)

where x > 0 and the functions ϕn(y) have been introduced
earlier in Eq. (6). In Eq. (11), A = v̄W 3/2 is an unknown
amplitude (here v̄ has physical dimensions of a velocity),
which can be estimated as discussed below, k̄n = Re [kn(ω)]
and βn = Im [kn(ω)] with kn(ω) as in Eq. (8), ξ ∈ [0,1] is a
real parameter that allows us to interpolate between the case in
which only the n = 0 mode is launched (ξ = 0) and the case in
which only the n = 1 mode is launched (ξ = 1), and eiα (with
α real) is the relative phase between the two modes. In the case
in which plasmons are launched at r� by using a metallized
tip illuminated by light [5–9], ξ depends on the tip-sample
coupling: For example, for a tip placed symmetrically with
respect to the GPW axis, ξ vanishes. In practice, ξ can be varied

by moving the tip along the ŷ direction. (c) With the velocity
field in Eq. (11), one can easily calculate the asymptotic
density profile n

(a)
1 (r,t) from the continuity equation. (d) The

quantities n
(a)
1 (r,t) and v

(a)
1 (r,t) are then used to calculate

the temporal averages that appear on the right-hand side of
Eqs. (9) and (10). (e) Finally, δV (r) is found by solving Eqs. (9)
and (10).

Simple and compact analytical expressions, obtained by
following steps (a)–(e), are available for δV (r) in the extreme
cases ξ = 0 and ξ = 1 and are presented in Sec. IV of Ref. [38].
In the general ξ 
= 0,1 case, an oscillatory term with spatial
periodicity 2π/(k̄0 − k̄1) appears along the x̂ direction due
to interference of the two modes in Eq. (11). Illustrative
numerical results can be found in Fig. 3. Notice that the dc
signal is �0.5 mV and that its spatial extension is ∼20 μm. The
dc potentials on the top and bottom GPW edges are not equal
in the case ξ 
= 0,1 since Eq. (11) is a superposition of modes
with different parity. The quantity A in Eq. (11) was estimated
with reference to Refs. [5–9], where a metallized tip is used to
launch plasmons. In this case, A can be calculated starting from
the amplitude of density oscillations δn in units of n̄, created
by the tip at r�. The results in Fig. 3 have been produced
by using [41] δn/n̄ = 1% at x = 0. This “normalization”
condition yields different values of A for different values of
ξ,α. In other words, A measures how well the tip couples to
the linear combination of modes in Eq. (11). The ξ = 0 mode
has a better coupling to the tip (and therefore yields a larger
dc signal) than the linear superposition of n = 0 and n = 1
modes corresponding to ξ = 1/2 and α = π/4.

Conclusions. In summary, we have discussed an archi-
tecture based on a graphene waveguide where electrical
detection of plasmons may be experimentally achieved. We
have theoretically demonstrated that rectification of the ac
field of a propagating plasmon, which is enabled by nonlinear
terms in Eqs. (1)–(4), yields a spatially dependent dc signal
δV (r). The experimental exploitation of similar nonlinearities
has recently led [20] to room-temperature graphene THz
photodetectors. We stress that δV (r) can be calculated from
Eqs. (9) and (10) and can be measured by using lateral
probe contacts as in Fig. 1. Simple analytical expressions for
δV (r) have been given in Ref. [38] for the cases ξ = 0,1.
Numerical results for the general case ξ 
= 0,1 have been
presented in Fig. 3. Such values of dc voltages can be easily
measured.
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the electric-field enhancement due to the tip apex. The electron
density created by E can be estimated from linear response
theory [3], δn ∼ kσE/(eω), where σ = σ (k,ω) is the 2D MDF
conductivity at wave vector k and frequency ω. For δ = 0.1 and
κ = 10 we find δn ∼ 5 × 109 cm−2. The estimate δn/n̄ = 1%

for an average carrier density n̄ ∼ 1012 cm−2 in the THz follows
from an increase of d from 20 to 100 μm, keeping fixed P , δ,
and κ .
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