73 research outputs found

    Confined optical phonon modes in polar tetrapod nanocrystals detected by resonant inelastic light scattering

    Full text link
    We investigated CdTe nanocrystal tetrapods of different sizes by resonant inelastic light scattering at room temperature and under cryogenic conditions. We observe a strongly resonant behavior of the phonon scattering with the excitonic structure of the tetrapods. Under resonant conditions we detect a set of phonon modes that can be understood as confined longitudinal-optical phonons, surface-optical phonons, and transverse-optical phonons in a nanowire picture.Comment: 12 pages, 4 figure

    Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere

    Get PDF
    Annealing a film of CsPbBr3 nanocrystals (NCs) leads to the removal of surface ligands and ripening of the NCs below 200 °C

    Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities

    Get PDF
    Ultrafast control of light-matter interactions is fundamental in view of new technological frontiers of information processing. However, conventional optical elements are either static or feature switching speeds that are extremely low with respect to the time scales at which it is possible to control light. Here, we exploit the artificial epsilon-near-zero (ENZ) modes of a metal-insulator-metal nanocavity to tailor the linear photon absorption of our system and realize a nondegenerate all-optical ultrafast modulation of the reflectance at a specific wavelength. Optical pumping of the system at its high energy ENZ mode leads to a strong redshift of the low energy mode because of the transient increase of the local dielectric function, which leads to a sub-3-ps control of the reflectance at a specific wavelength with a relative modulation depth approaching 120%

    Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices

    Get PDF
    A patterned-growth, scalable fabrication strategy allows photodetectors with good electrical properties that show fast response with red light and persistent photocurrent with blue light

    Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors

    Get PDF
    Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of 1011 Jones and a gain up to 106, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of |E/E0| ≈ 20 for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors

    Emerging Approaches to DNA Data Storage: Challenges and Prospects

    Get PDF
    With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 × 1014GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 103GB/mm3. As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Quantum Dots: Synthesis and Characterization

    No full text
    Semiconductor nanocrystals, also known as quantum dots (QDs), are among the nanoscale materials that have been most investigated in the last two decades. This article concentrates on the synthesis of QDs prepared via chemical approaches in the liquid phase. Solution synthesis techniques of QDs started with pioneering work on II-VI semiconductors and have been rapidly extended to most of the III-V, IV-VI, and group IV compounds, to various metals, alloys, metal oxides, and even to doped nanocrystals. Parallel to synthesis techniques, many characterization tools are now available for QDs, of which we will give an overview in this article
    corecore