20 research outputs found
Molecular Mechanism of Substrate Specificity for Heparan Sulfate 2- O -Sulfotransferase
Heparan sulfate (HS) is an abundant polysaccharide in the animal kingdom with essential physiological functions. HS is composed of sulfated saccharides that are biosynthesized through a complex pathway involving multiple enzymes. In vivo regulation of this process remains unclear. HS 2-O-sulfotransferase (2OST) is a key enzyme in this pathway. Here, we report the crystal structure of the ternary complex of 2OST, 3′-phosphoadenosine 5′-phosphate, and a heptasaccharide substrate. Utilizing site-directed mutagenesis and specific oligosaccharide substrate sequences, we probed the molecular basis of specificity and 2OST position in the ordered HS biosynthesis pathway. These studies revealed that Arg-80, Lys-350, and Arg-190 of 2OST interact with the N-sulfo groups near the modification site, consistent with the dependence of 2OST on N-sulfation. In contrast, 6-O-sulfo groups on HS are likely excluded by steric and electrostatic repulsion within the active site supporting the hypothesis that 2-O-sulfation occurs prior to 6-O-sulfation. Our results provide the structural evidence for understanding the sequence of enzymatic events in this pathway
Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex
Throughout bacteria, archaea and eukarya, certain tRNA transcripts contain introns. Pre-tRNAs with introns require splicing to form the mature anticodon stem loop. In eukaryotes, tRNA splicing is initiated by the heterotetrameric tRNA splicing endonuclease (TSEN) complex. All TSEN subunits are essential, and mutations within the complex are associated with a family of neurodevelopmental disorders known as pontocerebellar hypoplasia (PCH). Here, we report cryo-electron microscopy structures of the human TSEN–pre-tRNA complex. These structures reveal the overall architecture of the complex and the extensive tRNA binding interfaces. The structures share homology with archaeal TSENs but contain additional features important for pre-tRNA recognition. The TSEN54 subunit functions as a pivotal scaffold for the pre-tRNA and the two endonuclease subunits. Finally, the TSEN structures enable visualization of the molecular environments of PCH-causing missense mutations, providing insight into the mechanism of pre-tRNA splicing and PCH
Recommended from our members
Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15 reveal insight into nuclease specificity and dynamics.
Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics
XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO
XDSGUI is a lightweight graphical user interface (GUI) for the XDS, SHELX and ARCIMBOLDO program packages that serves both novice and experienced users in obtaining optimal processing and phasing results for X‐ray, neutron and electron diffraction data. The design of the program enables data processing and phasing without command line usage, and supports advanced command flows in a simple user‐modifiable and user‐extensible way. The GUI supplies graphical information based on the tabular log output of the programs, which is more intuitive, comprehensible and efficient than text output can be.A customizable stateless graphical user interface simplifies the processing, analysis and phasing of diffraction data.
image
</p
XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO
XDSGUI is a lightweight graphical user interface (GUI) for the XDS, SHELX and ARCIMBOLDO program packages that serves both novice and experienced users in obtaining optimal processing and phasing results for X-ray, neutron and electron diffraction data. The design of the program enables data processing and phasing without command line usage, and supports advanced command flows in a simple user-modifiable and user-extensible way. The GUI supplies graphical information based on the tabular log output of the programs, which is more intuitive, comprehensible and efficient than text output can be.Isabel Usón acknowledges support from MICINN/AEI/FEDER/UE (grant Nos. PGC2018-101370-B-I00 and PID2021-128751NB-I00). Juno M. Krahn acknowledges support in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (award No. ZIC ES102645).Peer reviewe
Structure of Escherichia coli dGTP Triphosphohydrolase: A hexameric enzyme with DNA effector molecules
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase
whose detailed role still remains to be determined. Deletion
of dgt creates a mutator phenotype, indicating that the
dGTPase has a fidelity role, possibly by affecting the cellular
dNTP pool. In the present study, we have investigated the structure
of the Dgt protein at 3.1-Å resolution. One of the obtained
structures revealed a protein hexamer that contained two molecules
of single-stranded DNA. The presence of DNA caused
significant conformational changes in the enzyme, including in
the catalytic site of the enzyme. Dgt preparations lacking DNA
were able to bind single-stranded DNA with high affinity (Kd
50 nM). DNA binding positively affected the activity of the
enzyme: dGTPase activity displayed sigmoidal (cooperative)
behavior without DNA but hyperbolic (Michaelis-Menten)
kinetics in its presence, consistent with a specific lowering of the
apparent Km for dGTP. A mutant Dgt enzyme was also created
containing residue changes in the DNA binding cleft. This
mutant enzyme, whereas still active, was incapable of DNA
binding and could no longer be stimulated by addition of DNA.
We also created an E. coli strain containing the mutant dgt gene
on the chromosome replacing the wild-type gene. The mutant
also displayed a mutator phenotype. Our results provide insight
into the allosteric regulation of the enzyme and support a physiologically
important role of DNA binding
Ubiquitin stimulated reversal of topoisomerase 2 DNA-protein crosslinks by TDP2
Intramural research program of the US National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS) [1Z01ES102765 to R.S.W.]; Work in the F.C.L. lab is supported by Ministerio de Economía y Competitividad, Gobierno de España [SAF2017-89619-R, European Regional Development Fund]; European Research Council [ERC-CoG-2014-647359]; University of Seville Predoctoral Studentship [PIF-2011 to J.A.L.]; M.J.S. is supported by Mayo Clinic start-up funds and the Center for Biomedical Discovery new investigator funds; Data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory; Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; SAXS data were collected at the Advanced Light Source (ALS), a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the Department of Energy, Office of Basic Energy Sciences, through the Integrated Diffraction Analysis Technologies (IDAT) program, supported by DOE Office of Biological and Environmental Research. Additional support comes from the National Institute of Health project ALS-ENABLE [P30 GM124169]; High-End Instrumentation Grant [S10OD018483]. Funding for open access charge: US government, Intramural NIH.Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.S
Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma.
Due to the poor prognosis of advanced metastatic melanoma, it is crucial to find early biomarkers that help identify which melanomas will metastasize. By comparing the gene expression data from primary and cutaneous melanoma samples from The Cancer Genome Atlas (TCGA), we identified GPC6 among a set of genes whose expression levels can distinguish between primary melanoma and regional cutaneous/subcutaneous metastases. Glypicans are thought to play a role in tumor growth by regulating the signaling pathways of Wnt, Hedgehogs, fibroblast growth factors (FGFs), and bone morphogenetic proteins (BMPs). We showed that GPC6 expression was up-regulated in a melanoma cell line compared to normal melanocytes and in metastatic melanoma compared to primary melanoma. Furthermore, GPC6 expression was positively correlated with genes largely involved in cell adhesion and migration in both melanoma samples and in RNA-seq samples from other TCGA tumors. Our results suggest that GPC6 may play a role in tumor metastatic progression. In TCGA melanoma samples, we also showed that GPC6 expression was negatively correlated with miR-509-3p, which has previously been shown to function as a tumor suppressor in various cancer cell lines. We overexpressed miR-509-3p in A375 melanoma cells and showed that GPC6 expression was significantly suppressed. This result suggested that GPC6 was a putative target of miR-509-3p in melanoma. Together, our findings identified GPC6 as an early biomarker for melanoma metastatic progression, one that can be regulated by miR-509-3p
Targeting the Structural Maturation Pathway of HIV-1 Reverse Transcriptase
Formation of active HIV-1 reverse transcriptase (RT) proceeds via a structural maturation process that involves subdomain rearrangements and formation of an asymmetric p66/p66′ homodimer. These studies were undertaken to evaluate whether the information about this maturation process can be used to identify small molecule ligands that retard or interfere with the steps involved. We utilized the isolated polymerase domain, p51, rather than p66, since the initial subdomain rearrangements are largely limited to this domain. Target sites at subdomain interfaces were identified and computational analysis used to obtain an initial set of ligands for screening. Chromatographic evaluations of the p51 homodimer/monomer ratio support the feasibility of this approach. Ligands that bind near the interfaces and a ligand that binds directly to a region of the fingers subdomain involved in subunit interface formation were identified, and the interactions were further characterized by NMR spectroscopy and X-ray crystallography. Although these ligands were found to reduce dimer formation, further efforts will be required to obtain ligands with higher binding affinity. In contrast with previous ligand identification studies performed on the RT heterodimer, subunit interface surfaces are solvent-accessible in the p51 and p66 monomers, making these constructs preferable for identification of ligands that directly interfere with dimerization