155 research outputs found

    Low aerobic capacity in McArdle disease: A role for mitochondrial network impairment?

    Get PDF
    [Background]: McArdle disease is caused by myophosphorylase deficiency and results in complete inability for muscle glycogen breakdown. A hallmark of this condition is muscle oxidation impairment (e.g., low peak oxygen uptake (VO2peak)), a phenomenon traditionally attributed to reduced glycolytic flux and Krebs cycle anaplerosis. Here we hypothesized an additional role for muscle mitochondrial network alterations associated with massive intracellular glycogen accumulation. [Methods]: We analyzed in depth mitochondrial characteristics-content, biogenesis, ultrastructure-and network integrity in skeletal-muscle from McArdle/control mice and two patients. We also determined VO2peak in patients (both sexes, N = 145) and healthy controls (N = 133). [Results]: Besides corroborating very poor VO2peak values in patients and impairment in muscle glycolytic flux, we found that, in McArdle muscle: (a) damaged fibers are likely those with a higher mitochondrial and glycogen content, which show major disruption of the three main cytoskeleton components-actin microfilaments, microtubules and intermediate filaments-thereby contributing to mitochondrial network disruption in skeletal muscle fibers; (b) there was an altered subcellular localization of mitochondrial fission/fusion proteins and of the sarcoplasmic reticulum protein calsequestrin-with subsequent alteration in mitochondrial dynamics/function; impairment in mitochondrial content/biogenesis; and (c) several OXPHOS-related complex proteins/activities were also affected. [Conclusions]: In McArdle disease, severe muscle oxidative capacity impairment could also be explained by a disruption of the mitochondrial network, at least in those fibers with a higher capacity for glycogen accumulation. Our findings might pave the way for future research addressing the potential involvement of mitochondrial network alterations in the pathophysiology of other glycogenoses.The present study was funded by grants received from the Fondo de Investigaciones Sanitarias (FIS, PI17/02052, PI18/00139, PI19/01313, and PI20/00645) and cofunded by ‘Fondos FEDER’. Gisela Nogales-Gadea and Carmen Fiuza-Luces are supported by the Miguel Servet research contracts (ISCIII CD14/00032 and CP18/00034, respectively and cofounded by Fondos FEDER′). Research by Pedro L. Valenzuela is funded by a postdoctoral contract granted by Instituto de Salud Carlos III (Sara Borrell, CD21/00138). Monica Villarreal Salazar is supported by the Mexican National Council for Science and Technology (CONACYT)

    Meta-analysis of tumour burden in pre-operative axillary ultrasound positive and negative breast cancer patients

    Get PDF
    Management of the axilla in breast cancer is becoming increasingly conservative. Patients identified with a low axillary nodal burden (two or fewer involved nodes) at sentinel node biopsy (SNB) can avoid completion axillary node clearance (cANC). 'Fast track' to ANC in patients with involved nodes on pre-operative ultrasound may be over-treating a subgroup of these patients with low nodal burden, which would have precluded their need for ANC. This systematic review assesses the proportion of patients with involved nodes on pre-operative axillary ultrasound, which would fit low axillary burden criteria. Meta-analysis of studies comparing axillary burden of breast cancer patients identified as pre-operative ultrasound negative versus positive was performed. The primary outcome measure was the number of patients with two or fewer involved nodes (macrometastases only). Pooled odds ratio (OR), 95% confidence intervals (CIs), means and probabilities of identifying two or fewer involved nodes versus greater than two were calculated. Six studies reported the axillary burden in 4271 patients who were either directed straight to ANC or cANC after SNB. There was a significantly greater axillary burden in the ultrasound positive versus negative groups (OR 5.95, 95% CI 5.80-6.11) with mean nodal retrieval values of 2.9 [standard error (SE) 0.2] and 1.6 (SE 0.2) nodes, respectively. Cumulative probabilities identified 78.9% of ultrasound negative and 43.2% of ultrasound positive patients possessed low axillary burden. Pre-operative ultrasound positive patients have significantly higher axillary burden. However, nearly half do fit the criteria of low axillary burden and could be considered for omission of ANC

    From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases

    Get PDF
    Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human

    The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs

    Get PDF
    Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited

    Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease

    Get PDF
    In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease

    Impact of non-axillary sentinel node biopsy on staging and treatment of breast cancer patients

    Get PDF
    The purpose of this study was to evaluate the occurrence of lymphatic drainage to non-axillary sentinel nodes and to determine the implications of this phenomenon. A total of 549 breast cancer patients underwent lymphoscintigraphy after intratumoural injection of 99mTc-nanocolloid. The sentinel node was intraoperatively identified with the aid of intratumoural administered patent blue dye and a gamma-ray detection probe. Histopathological examination of sentinel nodes included step-sectioning at six levels and immunohistochemical staining. A sentinel node outside level I or II of the axilla was found in 149 patients (27%): internal mammary sentinel nodes in 86 patients, other non-axillary sentinel nodes in 44 and both internal mammary and other non-axillary sentinel nodes in nineteen patients. The intra-operative identification rate was 80%. Internal mammary metastases were found in seventeen patients and metastases in other non-axillary sentinel nodes in ten patients. Staging improved in 13% of patients with non-axillary sentinel lymph nodes and their treatment strategy was changed in 17%. A small proportion of clinically node negative breast cancer patients can be staged more precisely by biopsy of sentinel nodes outside level I and II of the axilla, resulting in additional decision criteria for postoperative regional or systemic therapy

    Drug Discovery for Duchenne Muscular Dystrophy via Utrophin Promoter Activation Screening

    Get PDF
    Background: Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use. Methodology/Principal Findings: We developed and validated a cell-based, high-throughput screening assay for utrophin promoter activation, and used it to screen the Prestwick Chemical Library of marketed drugs and natural compounds. Initial screening produced 20 hit molecules, 14 of which exhibited dose-dependent activation of the utrophin promoter and were confirmed as hits. Independent validation demonstrated that one of these compounds, nabumetone, is able to upregulate endogenous utrophin mRNA and protein, in C2C12 muscle cells. Conclusions/Significance: We have developed a cell-based, high-throughput screening utrophin promoter assay. Using this assay, we identified and validated a utrophin promoter-activating drug, nabumetone, for which pharmacokinetics an

    Genome Wide DNA Copy Number Analysis of Serous Type Ovarian Carcinomas Identifies Genetic Markers Predictive of Clinical Outcome

    Get PDF
    Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs) were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS) and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and 20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous tumors into clinically relevant treatment subgroups

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Lipid (per) oxidation in mitochondria:an emerging target in the ageing process?

    Get PDF
    Lipids are essential for physiological processes such as maintaining membrane integrity, providing a source of energy and acting as signalling molecules to control processes including cell proliferation, metabolism, inflammation and apoptosis. Disruption of lipid homeostasis can promote pathological changes that contribute towards biological ageing and age-related diseases. Several age-related diseases have been associated with altered lipid metabolism and an elevation in highly damaging lipid peroxidation products; the latter has been ascribed, at least in part, to mitochondrial dysfunction and elevated ROS formation. In addition, senescent cells, which are known to contribute significantly to age-related pathologies, are also associated with impaired mitochondrial function and changes in lipid metabolism. Therapeutic targeting of dysfunctional mitochondrial and pathological lipid metabolism is an emerging strategy for alleviating their negative impact during ageing and the progression to age-related diseases. Such therapies could include the use of drugs that prevent mitochondrial uncoupling, inhibit inflammatory lipid synthesis, modulate lipid transport or storage, reduce mitochondrial oxidative stress and eliminate senescent cells from tissues. In this review, we provide an overview of lipid structure and function, with emphasis on mitochondrial lipids and their potential for therapeutic targeting during ageing and age-related disease
    • …
    corecore