707 research outputs found
A Serological Biomarker of Laminin Gamma 1 Chain Degradation Reflects Altered Basement Membrane Remodeling in Crohn’s Disease and DSS Colitis
Background:
The laminin gamma 1 chain (LMγ1) is abundant along the crypt-villus axis in the intestinal basement membrane. /
Aims:
We investigated whether a serological biomarker of laminin degradation was associated with disease activity in patients with Crohn’s disease (CD) and in rats with dextran sulfate sodium (DSS)-induced colitis. /
Methods:
Serum samples from CD patients (n = 43), healthy subjects (n = 19), and Sprague Dawley rats receiving 5–6% DSS water for five days and regular drinking water for 11 days were included in this study. The LG1M biomarker, a neo-epitope degradation fragment of the LMγ1 chain generated by matrix metalloproteinases-9 (MMP-9), was measured in serum to estimate the level of laminin degradation. /
Results:
Serum LG1M was elevated in CD patients with active and inactive disease compared to healthy subjects (p < 0.0001). LG1M distinguished CD patients from healthy subjects, with an area under the curve (AUC) of 0.81 (p < 0.0001). Serum LG1M was decreased in DSS rats compared to controls 2 days after DSS withdrawal, and increased upon reversal of the disease. /
Conclusions:
Increased serum LG1M in active and inactive CD patients supports the evidence of altered LM expression in both inflamed and non-inflamed tissue. Moreover, lower LG1M levels in the early healing phase of DSS-induced colitis may reflect ongoing mucosal repair
Low aerobic capacity in McArdle disease: A role for mitochondrial network impairment?
[Background]: McArdle disease is caused by myophosphorylase deficiency and results in complete inability for muscle glycogen breakdown. A hallmark of this condition is muscle oxidation impairment (e.g., low peak oxygen uptake (VO2peak)), a phenomenon traditionally attributed to reduced glycolytic flux and Krebs cycle anaplerosis. Here we hypothesized an additional role for muscle mitochondrial network alterations associated with massive intracellular glycogen accumulation.
[Methods]: We analyzed in depth mitochondrial characteristics-content, biogenesis, ultrastructure-and network integrity in skeletal-muscle from McArdle/control mice and two patients. We also determined VO2peak in patients (both sexes, N = 145) and healthy controls (N = 133).
[Results]: Besides corroborating very poor VO2peak values in patients and impairment in muscle glycolytic flux, we found that, in McArdle muscle: (a) damaged fibers are likely those with a higher mitochondrial and glycogen content, which show major disruption of the three main cytoskeleton components-actin microfilaments, microtubules and intermediate filaments-thereby contributing to mitochondrial network disruption in skeletal muscle fibers; (b) there was an altered subcellular localization of mitochondrial fission/fusion proteins and of the sarcoplasmic reticulum protein calsequestrin-with subsequent alteration in mitochondrial dynamics/function; impairment in mitochondrial content/biogenesis; and (c) several OXPHOS-related complex proteins/activities were also affected.
[Conclusions]: In McArdle disease, severe muscle oxidative capacity impairment could also be explained by a disruption of the mitochondrial network, at least in those fibers with a higher capacity for glycogen accumulation. Our findings might pave the way for future research addressing the potential involvement of mitochondrial network alterations in the pathophysiology of other glycogenoses.The present study was funded by grants received from the Fondo de Investigaciones Sanitarias (FIS, PI17/02052, PI18/00139, PI19/01313, and PI20/00645) and cofunded by ‘Fondos FEDER’. Gisela Nogales-Gadea and Carmen Fiuza-Luces are supported by the Miguel Servet research contracts (ISCIII CD14/00032 and CP18/00034, respectively and cofounded by Fondos FEDER′). Research by Pedro L. Valenzuela is funded by a postdoctoral contract granted by Instituto de Salud Carlos III (Sara Borrell, CD21/00138). Monica Villarreal Salazar is supported by the Mexican National Council for Science and Technology (CONACYT)
Mind the gut:Genomic insights to population divergence and gut microbial composition of two marine keystone species
BACKGROUND: Deciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it has recently been argued that their microbiomes may also contribute to population genetic divergence. We explored whether this might be plausible along the well-described environmental gradient of the Baltic Sea in two species of sand lance (Ammodytes tobianus and Hyperoplus lanceolatus). Specifically, we assessed both their population genetic and gut microbial composition variation and investigated not only which environmental parameters correlate with the observed variation, but whether host genome also correlates with microbiome variation. RESULTS: We found a clear genetic structure separating the high-salinity North Sea from the low-salinity Baltic Sea sand lances. The observed genetic divergence was not simply a function of isolation by distance, but correlated with environmental parameters, such as salinity, sea surface temperature, and, in the case of A. tobianus, possibly water microbiota. Furthermore, we detected two distinct genetic groups in Baltic A. tobianus that might represent sympatric spawning types. Investigation of possible drivers of gut microbiome composition variation revealed that host species identity was significantly correlated with the microbial community composition of the gut. A potential influence of host genetic factors on gut microbiome composition was further confirmed by the results of a constrained analysis of principal coordinates. The host genetic component was among the parameters that best explain observed variation in gut microbiome composition. CONCLUSIONS: Our findings have relevance for the population structure of two commercial species but also provide insights into potentially relevant genomic and microbial factors with regards to sand lance adaptation across the North Sea-Baltic Sea environmental gradient. Furthermore, our findings support the hypothesis that host genetics may play a role in regulating the gut microbiome at both the interspecific and intraspecific levels. As sequencing costs continue to drop, we anticipate that future studies that include full genome and microbiome sequencing will be able to explore the full relationship and its potential adaptive implications for these species
Low survival rate and muscle fiber-dependent aging effects in the McArdle disease mouse model
Altres ajuts: The present study was funded by grants received from the Fondo de Investigaciones Sanitarias (FIS, grant PI16/01492 and PI15/00558) and cofunded by 'Fondos FEDER'. Gisela Nogales-Gadea is supported by a Trampoline Grant #21108 from AMF Telethon.McArdle disease is an autosomal recessive disorder caused by the absence of the muscle glycogen phosphorylase, which leads to impairment of glycogen breakdown. The McArdle mouse, a model heavily affected by glycogen accumulation and exercise intolerance, was used to characterize disease progression at three different ages. The molecular and histopathological consequences of the disease were analyzed in five different hind-limb muscles (soleus, extensor digitorum longus, tibialis anterior, gastrocnemius and quadriceps) of young (8-week-old), adult (35-week-old) and old (70-week-old) mice. We found that McArdle mice have a high perinatal and post-weaning mortality. We also observed a progressive muscle degeneration, fibrosis and inflammation process that was not associated with an increase in muscle glycogen content during aging. Additionally, this progressive degeneration varied among muscle and fiber types. Finally, the lack of glycogen content increase was associated with the inactivation of glycogen synthase and not with compensatory expression of the Pygl and/or Pygb genes in mature muscle
Results of an open label feasibility study of sodium valproate in people with McArdle disease
McArdle disease results from a lack of muscle glycogen phosphorylase in skeletal muscle tissue. Regenerating skeletal muscle fibres can express the brain glycogen phosphorylase isoenzyme. Stimulating expression of this enzyme could be a therapeutic strategy. Animal model studies indicate that sodium valproate (VPA) can increase expression of phosphorylase in skeletal muscle affected with McArdle disease. This study was designed to assess whether VPA can modify expression of brain phosphorylase isoenzyme in people with McArdle disease. This phase II, open label, feasibility pilot study to assess efficacy of six months treatment with VPA (20 mg/kg/day) included 16 people with McArdle disease. Primary outcome assessed changes in VO2peak during an incremental cycle test. Secondary outcomes included: phosphorylase enzyme expression in post-treatment muscle biopsy, total distance walked in 12 min, plasma lactate change (forearm exercise test) and quality of life (SF36). Safety parameters. 14 participants completed the trial, VPA treatment was well tolerated; weight gain was the most frequently reported drug-related adverse event. There was no clinically meaningful change in any of the primary or secondary outcome measures including: VO2peak, 12 min walk test and muscle biopsy to look for a change in the number of phosphorylase positive fibres between baseline and 6 months of treatment. Although this was a small open label feasibility study, it suggests that a larger randomised controlled study of VPA, may not be worthwhile
An optical survey for space debris on highly eccentric and inclined MEO orbits
Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary region (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. Comparably less experience
(both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits
which are sufficiently accurate to catalog such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA’s Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits were performed between January and August 2013. Eventually 255 surveys were
performed during these thirteen nights corresponding to about 47 h of observations. In total 30 uncorrelated faint objects were discov-
ered. On average one uncorrelated object was found every 100 min of observations. Some of these objects show a considerable brightness
variation and have a high area-to-mass ratio as determined in the orbit estimation process
Axillary lymph node dissection for breast cancer utilizing Harmonic Focus®
<p>Abstract</p> <p>Background</p> <p>For patients with axillary lymph node metastases from breast cancer, performance of a complete axillary lymph node dissection (ALND) is the standard approach. Due to the rich lymphatic network in the axilla, it is necessary to carefully dissect and identify all lymphatic channels. Traditionally, these lymphatics are sealed with titanium clips or individually sutured. Recently, the Harmonic Focus<sup>®</sup>, a hand-held ultrasonic dissector, allows lymphatics to be sealed without the utilization of clips or ties. We hypothesize that ALND performed with the Harmonic Focus<sup>® </sup>will decrease operative time and reduce post-operative complications.</p> <p>Methods</p> <p>Retrospective review identified all patients who underwent ALND at a teaching hospital between January of 2005 and December of 2009. Patient demographics, presenting pathology, treatment course, operative time, days to drain removal, and surgical complications were recorded. Comparisons were made to a selected control group of patients who underwent similar surgical procedures along with an ALND performed utilizing hemostatic clips and electrocautery. A total of 41 patients were included in this study.</p> <p>Results</p> <p>Operative time was not improved with the use of ultrasonic dissection, however, there was a decrease in the total number of days that closed suction drainage was required, although this was not statistically significant. Complication rates were similar between the two groups.</p> <p>Conclusion</p> <p>In this case-matched retrospective review, there were fewer required days of closed suction drainage when ALND was performed with ultrasonic dissection versus clips and electrocautery.</p
- …