210 research outputs found
Coordinated behavior of mitochondria in both space and time: a reactive species-activated wave of mitochondrial depolarization.
Reactive oxygen species (ROS) can trigger a transient burst of mitochondrial ROS production via ROS activation of the mitochondrial permeability transition pore (MPTP), a phenomenon termed ROS-induced ROS release (RIRR). The goal of this study was to investigate if the generation of ROS in a discrete region of a cardiomyocyte could serve to propagate RIRR-mediated mitochondrial depolarizations throughout a cell. Our experiments revealed that localized RIRR activated either RIRR-mediated fluctuations in mitochondrial membrane potential (time period: 3–10 min) or a traveling wave of depolarization of the cell's mitochondria (velocity: ∼5 μm/min). Both phenomena appeared to be mediated by the mitochondrial permeability transition pore and eventually encompassed the majority of the mitochondrial population of both isolated rat and rabbit cardiomyocytes. Furthermore, depolarization was often reversible; the waves of depolarization were then followed by a rapid (∼40 μm/min) repolarization wave of the mitochondria. We show that the RIRR can function to communicate the mitochondrial permeability transition from one mitochondrion to another in the isolated adult cardiomyocyte
Experimental evidence that leaf litter decomposability and flammability are decoupled across gymnosperm species
Biological decomposition and wildfire are two predominant and alternative processes that can mineralize organic C in forest litter. Currently, the relationships between decomposition and fire are still poorly understood. We provide an empirical test of the hypothesized decoupling of surface litter bed decomposability and flammability, and the underlying traits and trait spectra. We employed a 41-species set of gymnosperms of very broad evolutionary and geographic spread, because of the wide range of (absent to frequent) fire regimes they are associated with. We found that the interspecific pattern of mass loss proportions in a "common garden" decomposition experiment was not correlated with any of the flammability parameters and an RDA analysis also showed that the decomposability and flammability of leaf litter in litter layers were decoupled across species. This decoupling originates from the former depending mostly on size and shape spectrum traits and the latter on PES traits and those trait spectra being virtually uncorrelated. Synthesis: Our results show that, indeed, leaf litter decomposability and flammability parameters are decoupled across species, and this decoupling can be explained by their different drivers in terms of trait spectra: chemical traits for decomposability and size-shape traits for litter layer flammability
Sequence harmony: detecting functional specificity from alignments
Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww
Sequence harmony: detecting functional specificity from alignments
Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww
Motor Learning in Children with Neurofibromatosis Type I
The aim of this study was to quantify the frequently observed problems in motor control in Neurofibromatosis type 1 (NF1) using three tasks on motor performance and motor learning. A group of 70 children with NF1 was compared to age-matched controls. As expected, NF1 children showed substantial problems in visuo-motor integration (Beery VMI). Prism-induced hand movement adaptation seemed to be mildly affected. However, no significant impairments in the accuracy of simple eye or hand movements were observed. Also, saccadic eye movement adaptation, a cerebellum dependent task, appeared normal. These results suggest that the motor problems of children with NF1 in daily life are unlikely to originate solely from impairments in motor learning. Our findings, therefore, do not support a general dysfunction of the cerebellum in children with NF1
Statins, bone, and neurofibromatosis type 1
Neurofibromatosis type 1 (NF1) is a dominantly inherited multi-system disorder. Major features include pigmentary abnormalities, benign tumors of the nerve sheath (neurofibromas), malignant tumors, learning disabilities, and skeletal dysplasia. The NF1 gene functions as a tumor suppressor, but haploinsuffiency probably accounts for some aspects of the non-tumor phenotype. The protein product, neurofibromin, is a Ras GTPase-activating protein, and various Ras pathway inhibitors are being tested in preclinical models and clinical trials for effectiveness in treating NF1 complications. This month in BMC Medicine, a paper by Kolanczyk et al describes a preclinical mouse model for tibial dysplasia and provides evidence that the drug lovastatin – in use to treat cardiovascular disease – may be beneficial, opening the door to clinical trials in humans
Sex bias in autism spectrum disorder in neurofibromatosis type 1
BACKGROUND: Despite extensive literature, little is known about the mechanisms underlying sex bias in autism spectrum disorder (ASD). This study investigates the sex differences in ASD associated with neurofibromatosis type 1, a single-gene model of syndromic autism. METHODS: We analysed data from n = 194 children aged 4–16 years with neurofibromatosis type 1. Sex differences were evaluated across the Autism Diagnostic Interview-Revised (ADI-R), Autism Diagnostic Observation Schedule (ADOS), verbal IQ, Social Responsiveness Scale (SRS) and Conners questionnaires. RESULTS: There was 2.68:1 male:female ratio in children meeting ASD criteria on the deep phenotyping measures. On symptom profile, males with neurofibromatosis type 1 (NF1) + ASD were more impaired on reciprocal social interaction and communication domains of the ADI-R but we found no differences on the restricted, repetitive behaviours (RRBs) domain of the ADI-R and no differences on the social on the ADOS. NF1 ASD males and females were comparable on verbal IQ, and the inattention/hyperactivity domains of the Conners questionnaire. CONCLUSIONS: There is a significant male bias in the prevalence of ASD in NF1. The phenotypic profile of NF1 + ASD cases includes greater social communication impairment in males. We discuss the implications of our findings and the rationale for using NF1 as a model for investigating sex bias in idiopathic ASD
Different Prey Resources Suggest Little Competition Between Non-Native Frogs and Insectivorous Birds Despite Isotopic Niche Overlap
Non-native amphibians often compete with native amphibians in their introduced range, but their competitive effects on other vertebrates are less well known. The Puerto Rican coqui frog (Eleutherodactylus coqui) has colonized the island of Hawaii, and has been hypothesized to compete with insectivorous birds and bats. To address if the coqui could compete with these vertebrates, we used stable isotope analyses to compare the trophic position and isotopic niche overlap between the coqui, three insectivorous bird species, and the Hawaiian hoary bat. Coquis shared similar trophic position to Hawaii amakihi, Japanese white-eye, and red-billed leiothrix. Coquis were about 3 ‰ less enriched in δ15N than the Hawaiian hoary bat, suggesting the bats feed at a higher trophic level than coquis. Analyses of potential diet sources between coquis and each of the three bird species indicate that there was more dietary overlap between bird species than any of the birds and the coqui. Results suggest that Acari, Amphipoda, and Blattodea made up \u3e90% of coqui diet, while Araneae made up only 2% of coqui diet, but approximately 25% of amakihi and white-eye diet. The three bird species shared similar proportions of Lepidoptera larvae, which were ~25% of their diet. Results suggest that coquis share few food resources with insectivorous birds, but occupy a similar trophic position, which could indicate weak competition. However, resource competition may not be the only way coquis impact insectivorous birds, and future research should examine whether coqui invasions are associated with changes in bird abundance
Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation
Both the environment and the spatial configuration of habitat patches are important factors that shape community composition and affect species diversity patterns. Species have traits that allow them to respond to their environment. Our current knowledge on environment to species traits relationships is limited in spite of its potential importance for understanding community assembly and ecosystem function. The aim of our study was to examine the relative roles of environmental and spatial variables for the small-scale variation in Collembola (springtail) communities in a Dutch salt marsh. We used a trait-based approach in combination with spatial statistics and variance partitioning, between environmental and spatial variables, to examine the important ecological factors that drive community composition. Turnover of trait diversity across space was lower than for species diversity. Most of the variation in community composition was explained by small-scale spatial variation in topography, on a scale of 4-6 m, most likely because it determines the effect of inundation, which restricts where habitat generalists can persist. There were only small pure spatial effects on species and trait diversity, indicating that biotic interactions or dispersal limitation probably were less important for structuring the community at this scale. Our results suggest that for springtails, life form (i.e. whether they live in the soil or litter or on the surface/in vegetation) is an important and useful trait to understand community assembly. Hence, using traits in addition to species identity when analysing environment-organism relationships results in a better understanding of the factors affecting community composition
Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a
Behavioral phenotyping and genome-wide profiling of the histone modifier EHMT in Drosophila reveals a mechanism through which an epigenetic writer may control cognition
- …