103 research outputs found

    Data‐driven bioregionalization: A seascape‐scale study of macrobenthic communities in the Eurasian Arctic

    Get PDF
    We conduct the first model-based assessment of the biogeographical subdivision of Eurasian Arctic seas to (1) delineate spatial distribution and boundaries of macrobenthic communities on a seascape level; (2) assess the significance of environmental drivers of macrobenthic community structures; (3) compare our modelling results to historical biogeographical classifications; and (4) couple the model to climate scenarios of environmental changes to project potential shifts in the distribution and composition of macrobenthic communities by 2100. Location Eurasian Arctic seas, in particular Barents, Kara and Laptev Seas. Taxon 169 species of macrobenthic fauna; most common taxa are Polychaeta (85 species), Malacostraca (30 species), Bivalvia (26 species) and Gastropoda (10 species). Methods We employed the Region of Common Profile (RCP) approach to assess the bioregionalization patterns of Eurasian Arctic seafloor communities. The RCP approach allows the identification of seascape-scale distribution patterns by simultaneously considering biotic and environmental data within one modelling step. Results Four RCPs were identified within the Eurasian Arctic. The results showed that water depth, sea-ice cover, bottom-water temperature and salinity, proportion of fine sediments, particulate organic carbon (POC) and depth of the euphotic zone were among the most important driving variables of macrobenthos communities. The projections, driven by the climate-change scenarios, suggested a general north-eastward shift of the RCPs over the 21st century, mainly correlated with retreating sea-ice and increasing sea-bottom temperature. Main conclusions The identified RCPs largely match the previously reported large-scale distribution patterns of macrobenthic communities in Eurasian Arctic seas. The spatio-temporal dynamics of RCPs are in agreement with local long-term observation data on macrobenthic resilience/vulnerability in the studied region. The representation of the ecoregions and biotas in a probabilistic form, together with quantitative assessment of potential climate-driven changes, will help to adequately consider macrobenthic biodiversity dynamics in the development of science-based conservation measures

    Spatial variation in distributional patterns of Arctic benthic biodiversity

    Get PDF
    Marine benthic organisms living in shelf seas of the Siberian Arctic are impacted severely by the pronounced consequences of climate change. Polar ecosystems are used to stable conditions and even small changes could influence benthic communities, food webs, and ecosystem functions. Regional patterns in community composition result from the interaction between marine organisms and their local environment. In this study, these relationships are investigated in order to understand how climate change affect Arctic biodiversity in particular

    Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading

    Get PDF
    Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment–water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services
    corecore