67 research outputs found

    Violation of Quasineutrality in Semiconductor Transport: The Dember Effect

    Full text link
    Exact solution of the linearized equations for steady-state transport in semiconductors yields two modes that vary exponentially in space, one involving screening (without entropy production) and one involving diffusion and recombination (with entropy production). Neither mode is quasineutral. For constant surface photoexcitation with generation of electrons and holes, the steady-state response is a linear combination of these modes, subject to global electroneutrality. The resultant charge separation produces a voltage difference across the sample (the Dember effect)

    Search for Solar Axions Using Fe-57

    Full text link
    We have made a search for Fe-57 gamma rays of energy 14.4 keV induced by resonant absorption of monochromatic solar axions, as proposed by Moriyama. The proposed axions are suggested to be emitted from the Sun, in M1 transitions between the first, thermally excited state and the ground state of Fe-57. An upper limit on hadronic axion mass of 745 eV is obtained at the 95% confidence level, it being assumed that z=0.56 and S=0.5.Comment: 4 pages, latex, revtex source, 1 postscript figure included, Title revised, some references added and expanded discussion. Version accepted by Phys. Lett.

    Search for solar axions using Li-7

    Full text link
    We describe a novel approach to the search for solar, near-monochromatic hadronic axions, the latter being suggested to be created in the solar core during M1 transitions between the first excited level of Li-7, at 478 keV, and the ground state. As a result of Doppler broadening, in principle these axions can be detected via resonant absorption by the same nuclide on the Earth. Excited nuclei of Li-7 are produced in the solar interior by Be-7 electron capture and thus the axions are accompanied by emission of Be-7 solar neutrinos of energy 384 keV. An experiment was made which has yielded an upper limit on hadronic axion mass of 32 keV at the 95% confidence level.Comment: revtex, 4 pages with 2 figures, title revised, minor changes, matches version to appear in Phys. Rev.

    Recent searches for solar axions and large extra dimensions

    Full text link
    We analyze the data from two recent experiments designed to search for solar axions within the context of multidimensional theories of the Kaluza-Klein type. In these experiments, axions were supposed to be emitted from the solar core, in M1 transitions between the first excited state and the ground state of 57Fe and 7Li. Because of the high multiplicity of axionic Kaluza-Klein states which couple with the strength of ordinary QCD axions, we obtain much more stringent experimental limits on the four-dimensional Peccei-Quinn breaking scale f_{PQ}, compared with the solar QCD axion limit. Specifically, for the 57Fe experiment, f_{PQ}>1x10^6 GeV in theories with two extra dimensions and a higher-dimensional gravitational scale M_H of order 100 TeV, and f_{PQ}>1x10^6 GeV in theories with three extra dimensions and M_H of order 1 TeV (to be compared with the QCD axion limit, f_{PQ}>8x10^3 GeV). For the 7Li experiment, f_{PQ}>1.4x10^5 GeV and 3.4x10^5 GeV, respectively (to be compared with the QCD axion limit, f_{PQ}>1.9x10^2 GeV). It is an interesting feature of our results that, in most cases, the obtained limit on f_{PQ} cannot be coupled with the mass of the axion, which is essentially set by the (common) radius of the extra dimensions.Comment: 4 pages, revtex 4, minor changes, version accepted by PR

    Prospects for the CERN Axion Solar Telescope Sensitivity to 14.4 keV Axions

    Get PDF
    The CERN Axion Solar Telescope (CAST) is searching for solar axions using the 9.0 T strong and 9.26 m long transverse magnetic field of a twin aperture LHC test magnet, where axions could be converted into X-rays via reverse Primakoff process. Here we explore the potential of CAST to search for 14.4 keV axions that could be emitted from the Sun in M1 nuclear transition between the first, thermally excited state, and the ground state of 57Fe nuclide. Calculations of the expected signals, with respect to the axion-photon coupling, axion-nucleon coupling and axion mass, are presented in comparison with the experimental sensitivity.Comment: 4 pages, 1 figure. Submitted to Nucl. Instr. and Meth.

    Results and perspectives of the solar axion search with the CAST experiment

    Full text link
    The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. Recent results obtained by the use of 3^3He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with 4^4He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eVma \le m_{a} \le 0.64 eV. From the absence of an excess of x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ2.3×1010_{a\gamma} \le 2.3\times 10^{-10} GeV1^{-1} at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be shown reaching mean upper limits on the axion-photon coupling of gaγ3.5×1010_{a\gamma} \le 3.5\times 10^{-10} GeV1^{-1} at 95% C.L. Expected sensibilities for the extension of the CAST program up to 2014 will be presented. Moreover long term options for a new helioscope experiment will be evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres de Blois V2 A few affiliations were not corrected in previous version V3 Author adde

    Hunting up low-mass bosons from the Sun using HPGe detector

    Full text link
    In this experiment we aim to look for keV-mass bosons emitted from the Sun, by looking at a process analogous to the photoelectric/Compton effect inside the HPGe detector. Their coupling to both electrons and nucleons is assumed. For masses above 25 keV, the mass dependence of our limit on the scalar-electron coupling reveals a constraint which proves stronger than that obtained recently and based on the very good agreement between the measured and predicted solar neutrino flux from the ^{8}B reaction. On the other hand, the mass dependence of our limit on the scalar-proton/electron coupling together entails a limit on a possible Yukawa addition to the gravitational inverse square low. Such a constraint on the Yukawa interactions proves much stronger than that derived from the latest AFM Casimir force measurement.Comment: elsarticle style, 4 eps figures, 4 pages, minor corrections, some clarifications added, to appear in Phys. Lett.

    Search for chameleons with CAST

    Get PDF
    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm\beta_{\rm m}) and to photons (βγ\beta_{\gamma}) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1\,keV to 400\,eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600\,eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of βγ ⁣ ⁣1011\beta_{\gamma}\!\lesssim\!10^{11} for 1<βm<1061<\beta_{\rm m}<10^6.Comment: 8 pages, 12 figure

    First results from the CERN Axion Solar Telescope (CAST)

    Full text link
    Hypothetical axion-like particles with a two-photon interaction would be produced in the Sun by the Primakoff process. In a laboratory magnetic field (``axion helioscope'') they would be transformed into X-rays with energies of a few keV. Using a decommissioned LHC test magnet, CAST has been running for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling < 1.16 10^{-10} GeV^-1 at 95% CL for m_a <~0.02 eV. This limit is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment in this axion mass range.Comment: 4 pages, accepted by PRL. Final version after the referees comment

    Solar axion search with the CAST experiment

    Get PDF
    The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipe of an LHC dipole. The analysis of the data recorded during the first phase of the experiment with vacuum in the magnet pipes has resulted in the most restrictive experimental limit on the coupling constant of axions to photons. In the second phase, CAST is operating with a buffer gas inside the magnet pipes in order to extent the sensitivity of the experiment to higher axion masses. We will present the first results on the 4He^{4}{\rm He} data taking as well as the system upgrades that have been operated in the last year in order to adapt the experiment for the 3He^{3}{\rm He} data taking. Expected sensitivities on the coupling constant of axions to photons will be given for the recent 3He^{3}{\rm He} run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
    corecore