35 research outputs found

    Structures and functions of mitochondrial ABC transporters

    Get PDF
    A small number of physiologically important ATP-binding cassette (ABC) transporters are found in mitochondria. Most are half transporters of the B group forming homodimers and their topology suggests they function as exporters. The results of mutant studies point towards involvement in iron cofactor biosynthesis. In particular, ABC subfamily B member 7 (ABCB7) and its homologues in yeast and plants are required for iron-sulfur (Fe-S) cluster biosynthesis outside of the mitochondria, whereas ABCB10 is involved in haem biosynthesis. They also play a role in preventing oxidative stress. Mutations in ABCB6 and ABCB7 have been linked to human disease. Recent crystal structures of yeast Atm1 and human ABCB10 have been key to identifying substrate-binding sites and transport mechanisms. Combined with in vitro and in vivo studies, progress is being made to find the physiological substrates of the different mitochondrial ABC transporters

    Installing oncofertility programs for common cancers in optimum resource settings (Repro-Can-OPEN Study Part II): a committee opinion

    Get PDF
    The main objective of Repro-Can-OPEN Study Part 2 is to learn more about oncofertility practices in optimum resource settings to provide a roadmap to establish oncofertility best practice models. As an extrapolation for oncofertility best practice models in optimum resource settings, we surveyed 25 leading and well-resourced oncofertility centers and institutions from the USA, Europe, Australia, and Japan. The survey included questions on the availability and degree of utilization of fertility preservation options in case of childhood cancer, breast cancer, and blood cancer. All surveyed centers responded to all questions. Responses and their calculated oncofertility scores showed three major characteristics of oncofertility practice in optimum resource settings: (1) strong utilization of sperm freezing, egg freezing, embryo freezing, ovarian tissue freezing, gonadal shielding, and fractionation of chemo- and radiotherapy; (2) promising utilization of GnRH analogs, oophoropexy, testicular tissue freezing, and oocyte in vitro maturation (IVM); and (3) rare utilization of neoadjuvant cytoprotective pharmacotherapy, artificial ovary, in vitro spermatogenesis, and stem cell reproductive technology as they are still in preclinical or early clinical research settings. Proper technical and ethical concerns should be considered when offering advanced and experimental oncofertility options to patients. Our Repro-Can-OPEN Study Part 2 proposed installing specific oncofertility programs for common cancers in optimum resource settings as an extrapolation for best practice models. This will provide efficient oncofertility edification and modeling to oncofertility teams and related healthcare providers around the globe and help them offer the best care possible to their patients

    Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression

    No full text
    Introduction Placental development involves the variation of oxygen supply due to vascular changes and cytotrophoblast invasion. Chemokines and their receptors play an important role during placental formation. Herein, the analysis of the chemokine/receptor pair CXCL12/CXCR4 and further chemokine receptors, such as CCR1, CCR7 and CXCR6 expression in human cytotrophoblasts was conducted. Methods Human cytotrophoblasts were examined directly after isolation or after incubation with different oxygen tensions and a chemical HIF-stimulator for 12 h with realtime PCR, immunoblot, immunohistochemistry. Conditioned media of placental villi, decidua, and endothelial cells was used for ELISA analysis of CXL12. Cytotrophoblast migration assays were conducted applying conditioned media of endothelial cells, a CXCL12 gradient, and different oxygen level. Endometrial and decidual tissue was stained for CXCL12 expression. Results An upregulation of CXCL12, CXCR4, CCR1, CCR7 and CXCR6 was observed after cytotrophoblast differentiation. Low oxygen supply upregulated CXCR4, CCR7 and CXCR6, but downregulated CXCL12 and CCR1. In contrast to the HIF associated upregulation of the aforementioned proteins, downregulation of CXCL12 and CCR1 seemed to be HIF independent. Cytotrophoblast migration was stimulated by low oxygen, the application of a CXCL12 gradient and endothelial cell conditioned media. CXCL12 was detected in endometrial vessels, glands and conditioned media of placental and decidual tissue, but not decidual vessels. Discussion/conclusion Taken together, oxygen supply and cytotrophoblast differentiation seem to be regulators of chemokine and receptor expression and function in human cytotrophoblasts. Therefore, this system seems to be involved in placental development, directed cytotrophoblast migration in the decidual compartment and a subsequent sufficient supply of the growing fetus.</p

    Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression

    No full text
    Introduction Placental development involves the variation of oxygen supply due to vascular changes and cytotrophoblast invasion. Chemokines and their receptors play an important role during placental formation. Herein, the analysis of the chemokine/receptor pair CXCL12/CXCR4 and further chemokine receptors, such as CCR1, CCR7 and CXCR6 expression in human cytotrophoblasts was conducted. Methods Human cytotrophoblasts were examined directly after isolation or after incubation with different oxygen tensions and a chemical HIF-stimulator for 12 h with realtime PCR, immunoblot, immunohistochemistry. Conditioned media of placental villi, decidua, and endothelial cells was used for ELISA analysis of CXL12. Cytotrophoblast migration assays were conducted applying conditioned media of endothelial cells, a CXCL12 gradient, and different oxygen level. Endometrial and decidual tissue was stained for CXCL12 expression. Results An upregulation of CXCL12, CXCR4, CCR1, CCR7 and CXCR6 was observed after cytotrophoblast differentiation. Low oxygen supply upregulated CXCR4, CCR7 and CXCR6, but downregulated CXCL12 and CCR1. In contrast to the HIF associated upregulation of the aforementioned proteins, downregulation of CXCL12 and CCR1 seemed to be HIF independent. Cytotrophoblast migration was stimulated by low oxygen, the application of a CXCL12 gradient and endothelial cell conditioned media. CXCL12 was detected in endometrial vessels, glands and conditioned media of placental and decidual tissue, but not decidual vessels. Discussion/conclusion Taken together, oxygen supply and cytotrophoblast differentiation seem to be regulators of chemokine and receptor expression and function in human cytotrophoblasts. Therefore, this system seems to be involved in placental development, directed cytotrophoblast migration in the decidual compartment and a subsequent sufficient supply of the growing fetus.</p

    Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Get PDF
    Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies
    corecore