225 research outputs found

    New-physics contributions to the forward-backward asymmetry in B -> K* mu+ mu-

    Full text link
    We study the forward-backward asymmetry (AFB) and the differential branching ratio (DBR) in B -> K* mu+ mu- in the presence of new physics (NP) with different Lorentz structures. We consider NP contributions from vector-axial vector (VA), scalar-pseudoscalar (SP), and tensor (T) operators, as well as their combinations. We calculate the effects of these new Lorentz structures in the low-q^2 and high-q^2 regions, and explain their features through analytic approximations. We find two mechanisms that can give a significant deviation from the standard-model predictions, in the direction indicated by the recent measurement of AFB by the Belle experiment. They involve the addition of the following NP operators: (i) VA, or (ii) a combination of SP and T (slightly better than T alone). These two mechanisms can be distinguished through measurements of DBR in B -> K* mu+ mu- and AFB in B -> K mu+ mu-.Comment: 33 pages, revtex, 9 figures. Paper originally submitted with the wrong figures. This is corrected in the replacement. An incorrect factor of 2 found in a formula. This is corrected and figures modified. Conclusions unchanged. Typos correcte

    New Physics in b -> s mu+ mu-: CP-Conserving Observables

    Full text link
    We perform a comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b -> s mu+ mu- transition. We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP) and tensor (T) interactions on the differential branching ratios and forward-backward asymmetries (A_{FB}'s) of Bsbar -> mu+ mu-, Bdbar -> Xs mu+ mu-, Bsbar -> mu+ mu- gamma, Bdbar -> Kbar mu+ mu-, and Bdbar -> K* mu+ mu-, taking the new-physics couplings to be real. In Bdbar -> K* mu+ mu-, we further explore the polarization fraction f_L, the angular asymmetry A_T^{(2)}, and the longitudinal-transverse asymmetry A_{LT}. We identify the Lorentz structures that would significantly impact these observables, providing analytical arguments in terms of the contributions from the individual operators and their interference terms. In particular, we show that while the new VA operators can significantly enhance most of the asymmetries beyond the Standard Model predictions, the SP and T operators can do this only for A_{FB} in Bdbar -> Kbar mu+ mu-.Comment: 54 pages, JHEP format, 45 figures (included). 5/6/2013: typos in K* mu mu angular coefficients corrected, typos in Eq. (D.12) corrected, added a missing term in I3LT in Eq. (D.16). Numerical analysis unchange

    Meteors: A Delivery Mechanism of Organic Matter to the Early Earth

    Full text link
    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called "meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the clusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43257/1/11038_2004_Article_310535.pd

    Bayesian Fit of Exclusive bsˉb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of bsγb\to s\gamma and bsˉb\to s\bar\ell\ell operators. Our analysis of BKγB \to K^* \gamma, BK()ˉB \to K^{(*)} \bar\ell\ell and BsμˉμB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of BK(Kπ)ˉB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio

    Looking for leakage or monitoring for public assurance?

    Get PDF
    Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities – ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway)

    Charm-loop effect in BK()+B \to K^{(*)} \ell^{+} \ell^{-} and BKγB\to K^*\gamma

    Full text link
    We calculate the long-distance effect generated by the four-quark operators with cc-quarks in the BK()+B\to K^{(*)} \ell^+\ell^- decays. At the lepton-pair invariant masses far below the cˉc\bar{c}c-threshold, q24mc2q^2\ll 4m_c^2, we use OPE near the light-cone. The nonfactorizable soft-gluon emission from cc-quarks is cast in the form of a nonlocal effective operator. The BK()B\to K^{(*)} matrix elements of this operator are calculated from the QCD light-cone sum rules with the BB-meson distribution amplitudes. As a byproduct, we also predict the charm-loop contribution to BKγB\to K^*\gamma beyond the local-operator approximation. To describe the charm-loop effect at large q2q^2, we employ the hadronic dispersion relation with ψ=J/ψ,ψ(2S),...\psi=J/\psi,\psi (2S), ... contributions, where the measured BK()ψ B\to K^{(*)}\psi amplitudes are used as inputs. Matching this relation to the result of QCD calculation reveals a destructive interference between the J/ψJ/\psi and ψ(2S)\psi(2S) contributions. The resulting charm-loop effect is represented as a q2q^2-dependent correction ΔC9(q2)\Delta C_9(q^2) to the Wilson coefficient C9C_9. Within uncertainties of our calculation, at q2q^2 below the charmonium region the predicted ratio ΔC9(q2)/C9\Delta C_9(q^2)/C_9 is 5\leq 5% for BK+B\to K \ell^+\ell^-, but can reach as much as 20% for BK+B\to K^*\ell^+\ell^-, the difference being mainly caused by the soft-gluon contribution.Comment: A few comments added, version to appear in JHE

    Pyoderma gangrenosum – a review

    Get PDF
    Pyoderma gangrenosum (PG) is a rare noninfectious neutrophilic dermatosis. Clinically it starts with sterile pustules that rapidly progress and turn into painful ulcers of variable depth and size with undermined violaceous borders. The legs are most commonly affected but other parts of the skin and mucous membranes may also be involved. Course can be mild or malignant, chronic or relapsing with remarkable morbidity. In many cases PG is associated with an underlying disease, most commonly inflammatory bowel disease, rheumatic or haematological disease and malignancy. Diagnosis of PG is based on history of an underlying disease, typical clinical presentation, histopathology, and exclusion of other diseases that would lead to a similar appearance. The peak of incidence occurs between the ages of 20 to 50 years with women being more often affected than men. Aetiology has not been clearly determined yet. The treatment of PG is a challenge. Randomized, double-blinded prospective multicenter trials for PG are not available. The best documented treatments are systemic corticosteroids and ciclosporin A. Combinations of steroids with cytotoxic drugs are used in resistant cases. The combination of steroids with sulfa drugs or immunosuppressants has been used as steroid-sparing modalities. Anti-tumor necrosis alpha therapy in Crohn's disease showed a rapid response of PG. Skin transplants and the application of bioengineered skin is useful in selected cases as a complement to the immunosuppressive treatment. Topical therapy with modern wound dressings is useful to minimize pain and the risk of secondary infections. Despite recent advances in therapy, the prognosis of PG remains unpredictable

    Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01

    Get PDF
    Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. Methods: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). Findings: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. Interpretation: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. Funding: Funded by Roche Sequencing Solutions, Inc
    corecore