106 research outputs found

    The avian tectobulbar tract: development, explant culture, and effects of antibodies on the pattern of neurite outgrowth

    Get PDF
    The tectobulbar tract is the first long-distance projecting fiber pathway to appear during the development of the avian optic tectum (dorsal half of the mesencephalon). Immunologically stained wholemounts of the E3 mesencephalon reveal that the early tectobulbar axons course in a dorsal-to-ventral direction and abruptly turn in a caudal direction shortly before reaching the ventral midline. During subsequent development, more tectobulbar axons are generated that form a parallel array of thick fascicles coursing ventrally within the mesencephalon. At this later stage of development, the tectobulbar tract bifurcates into an ipsilateral and contralateral pathway, both growing in a caudal direction near the mesencephalic ventral midline. Bifurcation and change in direction of growth is accompanied by a complete loss of the fasciculated growth pattern. Each tectobulbar axon is thus divided into a proximal fasciculated and a distal unfasciculated segment. Tectobulbar fascicles occupy the most superficial surface layer of the mesencephalon at early stages and are displaced deeper into the tissue beginning at embryonic day 5. In both of these locations, tectobulbar axons express molecules involved in axon-axon and axon-substrate interactions like the G4 antigen, neural cell adhesion molecule (N-CAM), neurofascin, and T61 antigen as revealed by immunohistochemistry and immunoblotting. Stripes of the mesencephalon explanted onto a basal lamina substratum show vigorous outgrowth of neurites. These processes grow in fascicles at a growth rate of 40 microns/h. Staining of the neurites with specific antibodies, as well as the position of the retrogradely labeled cell bodies, is in agreement with these processes being tectobulbar axons. This in vitro explant system was used to investigate the expression and possible functional involvement of N-CAM, neurofascin, G4 protein, and T61 antigen in the growth of these axons. The presence of antigen- binding fragments of polyclonal anti-G4 antibodies completely blocks fasciculation of the neurites but has no influence on their rate of elongation. Antibodies against N-CAM and neurofascin have no detectable effects. The number and length of the in vitro growing axons are reduced by the monoclonal T61 antibody. This effect is reversible. The elucidation of the exact course in vivo and the accessibility to the axons growing in vitro make the tectobulbar tract an excellent model system for the investigation of the role of these and other proteins in axonal growth and guidance during the development of the CNS

    Nondirected axonal growth on basal lamina from avian embryonic neural retina

    Get PDF
    The vitreous surface of the embryonic avian retinal neuroepithelium was isolated by mechanical disruption of the retina mounted between 2 adhesive substrata. The 200-micron-thick sheath covered an area of up to 1 cm2 and consisted of the vitreal basal lamina with a lamina densa, 2 laminae rarae, and a carpet of ventricular cell endfeet on top of the lamina. The vitreal endfeet were removed by detergent treatment and an extracellular basal lamina was obtained. The laminae were further characterized by immunohistochemistry and immunoblotting. A 190 kDa laminin protein was detected in laminae with and without vitreal endfeet, whereas the membrane-bound neural cell adhesion molecule (N- CAM) was detectable only on the endfeet of the ventricular cells and was absent in the detergent-treated basal laminae. Neither immunoblotting nor immunostaining revealed fibronectin in these preparations. Explants of retina, sensory ganglia, and cerebellum from chick, quail, and mouse were cultured on the basal lamina as a substratum. In all cases axonal outgrowth was excellent, with a growth rate similar to that in situ. Outgrowing axons from sensory ganglia and cerebellar explants were accompanied by migratory cells, which, in the case of sensory ganglia, were flat cells and, in the case of cerebellar explants, resembled granular neurons. Optic axons grew on the laminae in an asymmetric, explant-inherent pattern specific for the position of origin of the explant. On detergent-treated basal laminae, as well as on laminin, the retinal axons grew in a clockwise orientation. This axonal growth pattern was specific for retinal tissue and was not observed with axons from other neural explants. In spite of the excellent substrate properties provided by the substratum, cues for growing axons (toward or away from the optic disk) were not detectable in the basal lamina preparations

    Agrin isoforms and their role in synaptogenesis

    Get PDF
    Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system

    Predicate Diagrams as Basis for the Verification of Reactive Systems

    Get PDF
    This thesis proposes a diagram-based formalism for verifying temporal properties of reactive systems. Diagrams integrate deductive and algorithmic verification techniques for the verification of finite and infinite-state systems, thus combining the expressive power and flexibility of deduction with the automation provided by algorithmic methods. Our formal framework for the specification and verification of reactive systems includes the Generalized Temporal Logic of Actions (TLA*) from Merz for both mathematical modeling reactive systems and specifying temporal properties to be verified. As verification method we adopt a class of diagrams, the so-called predicate diagrams from Cansell et al. We show that the concept of predicate diagrams can be used to verify not only discrete systems, but also some more complex classes of reactive systems such as real-time systems and parameterized systems. We define two variants of predicate diagrams, namely timed predicate diagrams and parameterized predicate diagrams, which can be used to verify real-time and parameterized systems. We prove the completeness of predicate diagrams and study an approach for the generation of predicate diagrams. We develop prototype tools that can be used for supporting the generation of diagrams semi-automatically.In dieser Arbeit schlagen wir einen diagramm-basierten Formalismus für die Verifikation reaktiver Systeme vor. Diagramme integrieren die deduktiven und algorithmischen Techniken zur Verifikation endlicher und unendlicher Systeme, dadurch kombinieren sie die Ausdrucksstärke und die Flexibilität von Deduktion mit der von algoritmischen Methoden unterstützten Automatisierung. Unser Ansatz für Spezifikation und Verifikation reaktiver Systeme schließt die Generalized Temporal Logic of Actions (TLA*) von Merz ein, die für die mathematische Modellierung sowohl reaktiver Systeme als auch ihrer Eigenschaften benutzt wird. Als Methode zur Verifikation wenden wir Prädikaten-diagramme von Cansell et al. an. Wir zeigen, daß das Konzept von Prädikatendiagrammen verwendet werden kann, um nicht nur diskrete Systeme zu verifizieren, sondern auch kompliziertere Klassen von reaktiven Systemen wie Realzeitsysteme und parametrisierte Systeme. Wir definieren zwei Varianten von Prädikatendiagrammen, nämlich gezeitete Prädikatendiagramme und parametrisierte Prädikatendiagramme, die benutzt werden können, um die Realzeit- und parametrisierten Systeme zu verifizieren. Die Vollständigkeit der Prädikatendiagramme wird nachgewiesen und ein Ansatz für die Generierung von Prädikatendiagrammen wird studiert. Wir entwickeln prototypische Werkzeuge, die die semi-automatische Generierung von Diagrammen unterstützen

    ON OPTICAL QUANTIFICATION OF CAVITATION PROPERTIES

    Get PDF
    SUMMARY This paper investigates quantitative cavitation characterization. In this context we propose shadow imaging to determine cavitation thickness and tip vortex volume. We propose a laser adjustment for absolute calibration and address cavitation extent by means of image processing. We present advantages and disadvantages of automatic processing with regard to our proposed techniques. Our main focus is on the novel cavitation thickness and tip vortex occurrence processing. Due to turbulent fluctuations all used techniques provide statistical results. The accuracy of single measurements mainly depends on camera resolution, aberrations in the optical path, illumination and optical access. INTRODUCTION In the framework of a joint research project between Hamburg Ship Model Basin (HSVA), Potsdam Model Basin (SVA), Technical University of Hamburg Harburg (TU-HH) and University of Rostock (URO), supported by the Federal Ministry of Economics and Technology (BMWI), quantitative measurements for determination of water quality and its influence on cavitation processes are performed. The goal of the project is a reliable prognosis of cavitation on ship propellers based on experiments in cavitation tunnels. We propose image processing techniques to quantify cavitation properties like cavitation thickness, cavitation extent and tip vortex volume. Conventionally, experts at the model basins use their experience to accurately describe cavitation by means of drawings. In addition, photos and high speed videos are provided to customers. However, the information derived from this data is mostly limited to the cavitation extent and the area of the tip vortex. To better describe the cavitation thickness, laser based techniques have been described in [1] and i

    SARS-CoV-2 Omicron variants BA.1 and BA.2 both show similarly reduced disease severity of COVID-19 compared to Delta, Germany, 2021 to 2022

    Get PDF
    German national surveillance data analysis shows that hospitalisation odds associated with Omicron lineage BA.1 or BA.2 infections are up to 80% lower than with Delta infection, primarily in ≥ 35-year-olds. Hospitalised vaccinated Omicron cases’ proportions (2.3% for both lineages) seemed lower than those of the unvaccinated (4.4% for both lineages). Independent of vaccination status, the hospitalisation frequency among cases with Delta seemed nearly threefold higher (8.3%) than with Omicron (3.0% for both lineages), suggesting that Omicron inherently causes less severe disease.Peer Reviewe

    The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions

    Get PDF
    Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions

    Neuronal LRP4 regulates synapse formation in the developing CNS

    Get PDF
    The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific knockdown of LRP4 by in utero electroporation of LRP4 miRNA in vivo also resulted in neurons with fewer primary dendrites and a lower density of spines in the developing cortex and hippocampus. Collectively, our results demonstrate an essential and novel role of neuronal LRP4 in dendritic development and synaptogenesis in the CNS
    • …
    corecore