
Predicate Diagrams as Basis
for the Verification of

Reactive Systems

Cecilia E. Nugraheni

München, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/11026492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Predicate diagrams as Basis
for the Verification of

Reactive Systems

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Cecilia E. Nugraheni

aus Surakarta, Indonesien

München, 9. Januar 2004

Erstgutachter: Prof. Dr. Fred Kröger

Zweitgutachter: Dr. Stephan Merz

Tag der mündlichen Prüfung: 13. Februar 2004

Abstract

This thesis proposes a diagram-based formalism for verifying temporal prop-

erties of reactive systems. Diagrams integrate deductive and algorithmic

verification techniques for the verification of finite and infinite-state systems,

thus combining the expressive power and flexibility of deduction with the

automation provided by algorithmic methods.

Our formal framework for the specification and verification of reactive

systems includes the Generalized Temporal Logic of Actions (TLA*) from

Merz for both mathematical modeling reactive systems and specifying tem-

poral properties to be verified. As verification method we adopt a class of

diagrams, the so-called predicate diagrams from Cansell et al.

We show that the concept of predicate diagrams can be used to verify not

only discrete systems, but also some more complex classes of reactive systems

such as real-time systems and parameterized systems. We define two variants

of predicate diagrams, namely timed predicate diagrams and parameterized

predicate diagrams, which can be used to verify real-time and parameterized

systems.

We prove the completeness of predicate diagrams and study an approach

for the generation of predicate diagrams. We develop prototype tools that

can be used for supporting the generation of diagrams semi-automatically.

i

ii

Zusammenfassung

In dieser Arbeit schlagen wir einen diagramm-basierten Formalismus für die

Verifikation reaktiver Systeme vor. Diagramme integrieren die deduktiven

und algorithmischen Techniken zur Verifikation endlicher und unendlicher

Systeme, dadurch kombinieren sie die Ausdrucksstärke und die Flexibilität

von Deduktion mit der von algoritmischen Methoden unterstützten Automa-

tisierung.

Unser Ansatz für Spezifikation und Verifikation reaktiver Systeme schließt

die Generalized Temporal Logic of Actions (TLA*) von Merz ein, die für die

mathematische Modellierung sowohl reaktiver Systeme als auch ihrer Eigen-

schaften benutzt wird. Als Methode zur Verifikation wenden wir Prädikaten-

diagramme von Cansell et al. an.

Wir zeigen, daß das Konzept von Prädikatendiagrammen verwendet wer-

den kann, um nicht nur diskrete Systeme zu verifizieren, sondern auch kom-

pliziertere Klassen von reaktiven Systemen wie Realzeitsysteme und parame-

trisierte Systeme. Wir definieren zwei Varianten von Prädikatendiagrammen,

nämlich gezeitete Prädikatendiagramme und parametrisierte Prädikatendia-

gramme, die benutzt werden können, um die Realzeit- und parametrisierten

Systeme zu verifizieren.

Die Vollständigkeit der Prädikatendiagramme wird nachgewiesen und ein

Ansatz für die Generierung von Prädikatendiagrammen wird studiert. Wir

entwickeln prototypische Werkzeuge, die die semi-automatische Generierung

von Diagrammen unterstützen.

iii

iv

Contents

Abstract i

Zusammenfassung iii

Contents viii

List of figures x

1 Introduction 1

1.1 Classification of reactive systems 2

1.2 Formal specification and verification 2

1.3 Verification techniques . 4

1.4 Abstraction . 5

1.5 Diagram-based verification . 5

1.6 Scope of the thesis . 6

1.7 Chapter outlined . 7

2 Preliminaries 9

2.1 Overview . 9

2.2 Set Notation . 9

2.3 Strings and languages . 11

2.4 Graphs . 12

2.5 Classical logic . 14

2.5.1 Propositional logic . 14

2.5.1.1 Syntax . 15

2.5.1.2 Semantics . 16

2.5.2 First order logic . 16

2.5.2.1 Syntax . 16

2.5.2.2 Semantics . 18

v

3 Properties and Temporal Logic 21

3.1 Overview . 21

3.2 Properties of reactive systems 21

3.2.1 Safety properties . 21

3.2.2 Liveness properties . 22

3.2.3 Specification . 23

3.3 TLA* . 24

3.3.1 Propositional TLA* (pTLA*) 24

3.3.1.1 Syntax . 24

3.3.1.2 Semantics . 25

3.3.1.3 Stuttering invariance 26

3.3.2 Quantified TLA* (qpTLA*) 27

3.3.2.1 Syntax . 27

3.3.2.2 Semantics . 28

3.3.3 First order TLA* . 29

3.3.3.1 Syntax . 29

3.3.3.2 Semantics . 31

3.3.4 Specifications . 32

3.3.5 Machine closed . 33

3.4 Writing specifications . 34

3.5 Remarks . 35

4 Automata on infinite words 37

4.1 Overview . 37

4.2 Muller automata . 38

4.3 From pTLA* to Muller-automata 39

4.3.1 Graph construction . 39

4.3.2 Automaton definition 43

4.3.3 Proof of correctness . 48

4.4 Timed automata . 57

4.5 Discussion and related work 60

5 Discrete systems 63

5.1 Overview . 63

5.2 Specification . 64

5.3 Predicate diagrams . 64

5.4 Verification . 67

5.4.1 Conformance . 67

5.4.2 Model checking predicate diagrams 68

5.5 An example: Bakery algorithm 69

vi

5.6 Completeness of predicate diagrams 73

5.7 Discussion and related work 82

6 Real time systems 85

6.1 Overview . 85

6.2 Specification . 86

6.3 Timed predicate diagrams . 88

6.4 Verification . 91

6.4.1 Relating specifications and TPDs 92

6.4.2 Model checking TPDs 97

6.5 An example: Fischer’s protocol 98

6.6 Discussions and related work 103

7 Parameterized systems 109

7.1 Overview . 109

7.2 Specification . 110

7.3 Tickets protocol: a case study 111

7.4 Verification using predicate diagrams 112

7.5 Parameterized predicate diagrams 115

7.6 Discussion and related work 120

8 Generation of diagrams 123

8.1 Overview . 123

8.2 Generation of predicate diagrams 124

8.2.1 Nodes . 124

8.2.2 Abstract interpretation 124

8.2.3 Abstract evaluation of an action 125

8.2.4 Maybe edges . 128

8.3 Generation of PPDs . 129

8.4 Discussion and related work 132

9 Conclusion and future work 133

Bibliography 137

A Automata generation 149

B PreDiaG 155

B.1 Architecture . 155

B.2 Input-Output . 156

B.3 Examples . 157

vii

B.3.1 AnyY problem . 157

B.3.2 Bakery algorithm . 157

C parPreDiaG 165

C.1 Architecture . 165

C.2 Input and output . 165

C.3 Example: Tickets protocol . 166

Acknowledgement 169

Lebenslauf 171

viii

List of Figures

2.1 A directed graph. 13

3.1 A module. 34

3.2 Increment problem: Pseudocode representation. 35

3.3 Module increment. 36

4.1 An example of Muller automaton. 38

4.2 Graphical representation of a node. 41

4.3 Formula graph generation algorithm. 44

4.4 expand algorithm. 45

4.5 expand algorithm (continued). 46

4.6 (a) Formula graph and (b) Muller automaton for 2p. 46

4.7 Procedure stdn. 52

4.8 A simple timed automaton. 58

5.1 Bakery algorithm for two processes: Pseudocode representation. 70

5.2 Module bakery. 71

5.3 Predicate diagram for Bakery algorithm. 72

6.1 Module Loop. 88

6.2 An example of tpd. 90

6.3 Fischer’s protocol. 99

6.4 Predicate diagram for Fischer’s protocol. 101

6.5 First tpd for Fischer’s protocol. 102

6.6 Second tpd for Fischer’s protocol. 104

6.7 Simplify algorithm. 105

6.8 tpd for Fischer’s protocol with assumption D < E 106

7.1 Tickets protocol for n ≥ 1 processes. 112

7.2 Predicate diagram for the Tickets protocol for n ≥ 1 processes. 114

7.3 ppd for Tickets protocol for n ≥ 1 processes. 118

ix

8.1 Galois connection between (L1,v1) and (L2,v2). 125

8.2 Module AnyY. 126

8.3 The resulted predicate diagram for AnyY problem. 128

8.4 Predicate diagram for Bakery algorithm. 129

8.5 The Tickets protocol (abstract version). 130

8.6 ppd for Tickets protocol with n ≥ 1 processes. 131

A.1 Formula graph and Muller automaton for v 149

A.2 Formula graph and Muller automaton for ◦v 150

A.3 Formula graph and Muller automaton for p → q 150

A.4 Formula graph and Muller automaton for 2p. 151

A.5 Formula graph and Muller automaton for ¬2p. 151

A.6 Formula graph and Muller automaton for 2[p]v 152

A.7 Formula graph and Muller automaton for ¬2[p]v 153

B.1 Architecture of PreDiaG. 155

B.2 Specification file: AnyY.tla . 157

B.3 Predicate file: AnyY.prd. 158

B.4 Rewriting file: AnyY.rew. 158

B.5 Output file: AnyY.dot. 159

B.6 Specification file: Bakery.tla. 160

B.7 Specification file: Bakery.tla (continued). 161

B.8 Predicate file: Bakery.prd. 162

B.9 Rewriting file: Bakery.rew. 163

B.10 Output file: Bakery.dot. 164

C.1 Architecture of parPreDiaG. 165

C.2 The template of specification files. 166

C.3 Template for predicate file. 166

C.4 Predicate file: Tickets.prd. 167

C.5 Specification file: Tickets.spc. 168

C.6 Output file: Tickets.dot. 168

x

Chapter 1

Introduction

The dependency on its own technological achievements by modern society

is getting more and more. Powerful computer systems, which are the back-

bones of almost conceivable technology today, are in the development or in

the implementation stages. The complexity of these systems is growing cease-

lessly. Most of today’s computing systems are characterized by an ongoing

interaction with their environments. This interaction occurs in various forms

such as the transmission of data over a communication network to another

machine, interaction with a human user, or the exchange of information with

the sensors and actuators of an embedded control system. Such systems

are called reactive, in contrast to transformational systems that compute an

output from a given input.

Considering our dependency on these systems, it is clear that they should

be correct. Reactive systems are most often composed of several communi-

cating concurrent processes. The inherent complexity of concurrency and

communication makes the discovery of design errors a difficult task. Not

only may there be mistakes in the calculations such system perform (as in

transformational systems), but there is also the possibility of synchronization

failures (such as deadlocks, starvation, unexpected message reception etc.).

One of the most challenging problems facing today’s software engineers and

computer scientists is therefore to find ways and establish techniques in order

to reduce the number of errors in reactive systems.

This thesis presents a methodology for the formal analysis of some classes

of reactive systems.

1

2 Chapter 1

1.1 Classification of reactive systems

Reactive systems are commonly classified as discrete, real-time and hybrid

[77]:

• A discrete system only represents the qualitative aspect of time, that

is the order of events, but does not measure the time elapsed between

these events. The behavior is fully described by the discrete events.

• A real-time system captures the metric aspects of time; discrete events

may have time stamps.

• In hybrid systems, we allow the inclusion of variables that evolve contin-

uously over time between discrete events. The evolution of the contin-

uous variables is described separately from the discrete events, usually

by differential equations.

The behavior of a reactive system can be characterized in different ways,

for example by the stream of outputs produced by the system, or by the

actions taken by the system. In this thesis, a reactive system is characterized

by the sequence of states, which are interpretations of the variables traversed

by the system. We call a system finite state if this set is finite, and otherwise

infinite state. Of course all real-time and hybrid systems are infinite-state

due to the presence of real-valued clock and continuous variables.

Reactive systems usually consist of a collection of processes running par-

allel in the systems. Parallel systems can be classified as interleaving and

non-interleaving systems. An interleaving system is a system in which each

step can be attributed to exactly one process. A non-interleaving system

allows steps that represent simultaneous operations of two or more differ-

ent processes. When a parallel system consists of a collection of identical

processes, it is categorized as a parameterized system.

1.2 Formal specification and verification

Formal methods are a collection of notations and techniques for describing

and analyzing systems. These methods are formal in the sense that they

are based on some mathematical theories, such as logic, automata or graph

theory. They are aimed at enhancing the quality of systems. Formal spec-

ification techniques introduce a precise and unambiguous description of the

properties of systems. This is useful in eliminating misunderstanding and

can be used further for debugging systems. Formal analysis techniques can

Introduction 3

be used to verify that a system satisfies its specification or to systematically

seek for cases where it fails to do so.

A formal framework for the specification and verification of reactive sys-

tems should include at least the following parts [78, 88]:

• a mathematical model of reactive systems,

• a requirement specification or property languages and

• a verification method.

Model The large majority of frameworks that include a verification me-

thod use transition systems as their computational model of reactive systems.

This is certainly due to the simplicity of this model. A transition system is

essentially a graph, where the nodes represent system’s states and the edges

represent the atomic transitions between these states. Concurrency is mod-

eled by non-deterministic interleaving of atomic actions. Another important

ingredient in the description of transition systems for modeling reactive sys-

tems are fairness and liveness conditions that require some actions to be

eventually taken or some state to be eventually reached. These conditions

help to balance the local non-determinism of transition systems of choosing

among actions that are permitted at a given source state and lead to different

possible target states.

Property In order to reason about the behavior of reactive systems, tem-

poral logic was proposed as a convenient specification or property language.

Temporal logics are extensions of classical (propositional and/or first-order)

logics, incorporating a model of the flow of time, either as metric constraints

or via a suitable semantics. Temporal logics are often classified according to

whether time is assumed to have a linear or a branching structure.

Verification Verification of reactive systems consists of establishing whe-

ther a reactive systems satisfies its specification, that is, whether all possible

behaviors of the system are included in the property specified. For finite-

state systems and a restricted class of infinite-state systems, verification of

temporal-logic properties is decidable: algorithms can be devised that deter-

mine in a finite number of steps whether a system satisfies its specification.

For the vast majority of infinite-state systems no such algorithms exist; the

problem is undecidable. In this case, verification relies on human interaction

and heuristics.

4 Chapter 1

The use of temporal logics for the specification and verification of reactive

systems goes back to Pnueli’s seminal paper on temporal logic [94]. For-

mulas of temporal logic are interpreted over runs of transition systems and

can thus express properties of reactive systems. Many useful properties of

reactive systems can be expressed in temporal logics, including safety prop-

erties (”nothing bad happens”) and liveness properties (”something good

happens”).

1.3 Verification techniques

There are basically two approaches to verification of reactive systems: the

algorithmic approach on one hand and the deductive approach on the other

hand. When verifying temporal properties of reactive systems, algorithm

methods are used when the problem is decidable and deductive methods are

employed otherwise.

The most popular algorithmic verification method is model checking, in-

dependently proposed by Clarke & Emerson [27, 28] and Queille &

Sifakis [95]. A complete state graph of the system is built and specialized

methods are used to check whether all paths through this graph conform

to some properties. A counterexample is found whenever a path that does

not satisfy a temporal property is encountered. Although this method is

fully automatic for finite-state systems, it suffers from the so-called state-

explosion problem. The size of the state space is typically exponential in

the number of components, and therefore the class of systems that can be

handled by this method is limited. State space reduction techniques such

as symbolic representations [25, 82, 22], symmetry [29, 43] and partial order

reductions [52, 92, 105] have yielded good results but the state spaces that

can be handled in this manner are still quite modest.

Automata-theoretic verification methods [108, 66] are closely related to

model checking, in which both the system and the property are represented by

ω-automata (automata on infinite words) and automata-theoretic methods

are used to establish language inclusion.

On the other end of the spectrum we find deductive verification methods

based on theorem proving; these methods are extension of the proof methods

originally established by Floyd [47] and Hoare [56] for sequential systems.

They typically reduce the proof of a temporal property to a set of proofs of

first-order verification conditions, which can then be dealt by standard theo-

rem provers. Deductive methods are very powerful and generally applicable

to infinite-state systems, but suffer from the high level of user interaction

Introduction 5

required to complete a proof.

While it is clear that any way out of this impasse must rely on a com-

bination of theorem proving and model checking, specific methodologies are

needed to make such a combination work with a reasonable degree of au-

tomation.

1.4 Abstraction

An attractive method for proving a temporal property ϕ for a reactive system

S is to find a simpler abstract system A such that if A satisfies ϕ then S
satisfies ϕ as well. In particular, if A is finite-state, the validity of ϕ for A
can be established automatically using a model checker, which may not have

been possible for S due to an infinite or overly large state-space.

Thus, abstraction is a key methodology in combining deductive and al-

gorithmic techniques. Abstraction can be used to reduce problems to model-

checkable form, where deductive tools are used to construct valid abstract

descriptions or to justify that a given abstraction is valid.

There is much work on the theoretical foundations of reactive system

abstraction [31, 37, 74, 36, 53, 33, 75, 40], usually based on the ideas of

abstract interpretation [34].

Most abstractions weakly preserve temporal properties: if a property

holds for the abstract systems, then a corresponding property will hold for

the concrete one. However, the converse will not be true: not all properties

satisfied by the concrete system will hold at the abstract level. Thus, only

positive results transfer from the abstract to the concrete level. This means,

in particular, that abstract counter-examples will not always correspond to

concrete ones.

1.5 Diagram-based verification

The deductive approach for verifying temporal properties of reactive systems

is based on verification rules, which reduce the system validity of a temporal

property to the general validity of a set of first-order verification conditions.

While this methodology is complete, relative to the underlying first-order

reasoning, the proofs do not always reflect an intuitive understanding of the

system and its specification; without this intuition, the proofs can be difficult

to construct.

The need for a more intuitive approach to verification leads to the use of

diagram-based formalisms. Usually, these diagrams are graphs whose vertices

6 Chapter 1

are labeled with first-order formulas, representing sets of system states, and

whose edges represent possible system transitions. This approach combines

some of the advantages of deductive and algorithmic verification: the process

is goal-directed and incremental, and can handle infinite-state systems.

Some features shared by these formalisms are [19, 26]:

• Diagrams (or sequences of diagrams) are formal proof objects, which

succinctly represent a set of verification conditions that replaces a com-

bination of textual verification rules.

• The graphical nature of diagrams makes them easier to construct and

understand than text-based proofs and specifications.

• Diagrams can describe and verify infinite-state systems using a finite

and often compact representation.

• Diagrams can be viewed as the abstract representation of the systems

being considered.

• The construction of a diagram can be incremental, starting from a

high-level outline and then filling in details as necessary.

• The verification conditions are local to the diagram; failed verification

conditions point to missing edges or nodes, or possible bugs in the

system. The necessary global properties of diagrams can be proved

algorithmically.

• Besides their use as a formal basis for verification, diagrams can also

serve as support for explaining how systems are working and for docu-

menting them.

There are some work using graphs to visualize and structure temporal

proof, for example the diagram from Owicki and Lamport [90], proof charts

from Cousot [35], Predicate-action diagrams proposed by Lamport [70],

verification diagrams from Manna & Pnueli [79], generalized verification

diagram from Sipma [99] and predicate diagrams from Cansell et al. [26].

1.6 Scope of the thesis

In this work, three classes of reactive systems are considered: discrete sys-

tems, real-time systems and parameterized systems. We will use the Gener-

alized Temporal Logic of Action (TLA*) from Merz [83], which is a variant

Introduction 7

of Temporal Logic of Action (TLA) from Lamport [69], to formalize our

methodology. Our choice is due to its completeness; in the sense that it

provides all the components of a formal framework for the specification and

verification of reactive systems as mentioned in Section 1.2. Like in TLA, in

TLA* there is no distinction between systems and properties, both are repre-

sented as formulas. It also provides proof systems that can be used to prove

that a specification satisfies a desired property. This verification process is

reduced to the proof that the specification implies the property.

In this thesis, we will follow the diagram-based verification techniques.

The verification will be done by means of predicate diagrams from Cansell

et al. It is already shown that this diagram is suitable to TLA formalism

[26].

The main goal of this thesis can be stated in the following questions:

1. How can reactive systems be represented in TLA*?

2. How can predicate diagrams be used to verify discrete systems?

3. What about the completeness of predicate diagrams, i.e. for any spec-

ification and any formula of the temporal propositional logic, if the

specification implies the formula, can the implication be proven by a

suitable predicate diagram?

4. How far can predicate diagrams be used to verify some other classes of

reactive systems, in particular the more complex systems than discrete

systems such as real-time systems and parameterized systems?

5. Is it possible to generate or to construct predicate diagrams automati-

cally?

1.7 Chapter outlined

In Chapter 2 mathematical preliminaries are introduced, including set nota-

tions, strings and languages, graphs and classical logics, in order to establish

the terminology and notational used in this book.

Chapter 3 is addressed to the properties of reactive systems. First, we

give the very general definition of properties as arbitrary subsets of infinite

states. Second, we give the definition of the syntax and semantics of TLA*

introduced by Merz [83]. We also present the general form of specification we

will use in this sequel and introduce the writing style for writing specifications

in the next sections.

8 Chapter 1

In the following chapter, Chapter 4, we will consider a class of finite au-

tomata over infinite words, called Muller automata [86], including the formal

definition and an algorithm for translating pTLA* formulas to a Muller au-

tomaton. We also briefly describe timed automata, which will be used in the

verification of real-time systems.

Chapter 5 deals with the verification of discrete systems. We define the

formula that will be used to represent the specification of discrete systems.

We then present predicate diagrams, including the definition and the steps

to be done in order to verify discrete systems using the diagrams. As illus-

tration, we take the Bakery Algorithm. We show that predicate diagram is

complete, i.e. for any specification and any formula of the temporal propo-

sitional logic, if the specification implies the formula, then there exists a

suitable predicate diagram that can be used to prove the implication.

Chapter 6 is devoted to the specification and verification of real-time

systems. First, we give the standard formula for real-time specification we

use in this book. Second, we define a variant of predicate diagrams, which

we call timed predicate diagrams that can be used to verify real-time systems.

As illustration, we take the Fischer’s protocol problem.

The verification of parameterized systems will be considered in the fol-

lowing chapter. After defining the specification of parameterized systems,

we explain how can predicate diagrams be used to verify the properties re-

lated to whole processes in the protocol. As a motivated example we take

the Tickets protocol. We then define a variant of predicate diagrams called

parameterized predicate diagrams that can be used to verify the property of

a single process in the Tickets protocol.

In Chapter 8 the method for automatically generation of diagrams will

be studied. It is started by briefly describing the concept of abstract inter-

pretation and the algorithm of the diagrams generation. Two tools that have

been developed in this work will be presented. Then it will be shown how

these tools can be used in the generation of diagrams for the case studies

presented in the previous chapters, namely the Bakery algorithm and the

Ticket protocol.

The final chapter concludes the thesis with a review of its goals and their

achievements and an outlook on future research.

Chapter 2

Preliminaries

2.1 Overview

This chapter is devoted to mathematical preliminaries, including set nota-

tions, strings and languages, graphs and classical logics. The objective of this

chapter is to establish the terminology and notational used in this book. For

more details, the reader may consult Gallier [48], Peled [93], Kröger

[65] and Fitting [46].

2.2 Set Notation

A set is a finite or infinite collection of elements. Repetitions of elements in a

set are ignored. For finite sets, the elements can be listed between a matching

pair of braces, as in {1, 3, 5}. Another notation for sets is {x : R(x)}, where

R is some description that restricts the possible values of x . In the sequel,

R denotes the set of real numbers, R+ denotes the set of nonnegative real

numbers, N denotes the set of natural numbers and ω denotes the smallest

infinite ordinal number where n < ω holds for every n ∈ N.

One special set is the empty set, denoted by ∅, which does not contain

any elements. The size of a set is the number of elements it contains. For a

finite set A, the size of A is denoted by |A|. Obviously, |∅| = 0.

To denote that an element x belongs to a set A, we write x ∈ A. If x

does not belong to A, we write x /∈ A. One can compare a pair of sets as

follows:

• A ⊆ B if for every element x ∈ A it is also the case that x ∈ B . We

say that A is contained in B or that A is a subset of B . In this case we

can also write B ⊇ A.

9

10 Chapter 2

• A = B if both A is contained in B and B is contained in A. We say

that A and B are equal.

• A ⊂ B if A is contained in B but A is not equal to B (thus, B must

include at least one element that is not in A). We say that A is properly

contained in B or that A is a proper subset of B . We can also write

B ⊃ A.

There are some usual operations that can be performed on sets:

• A ∪ B , the union of A and B , is {x : x is in A or x is in B}.

• A ∩ B , the intersection of A and B , is {x : x is in A and x is in B}.

• A \ B , the difference of A and B , is {x : x is in A and x is not in B}.

• A × B , the cartesian product of A and B , is the set of ordered pairs

(x 1, x 2) such that x 1 is in A and x 2 is in B .

• 2A, the power set of A, is the set of all subsets of A.

A binary relation between A and B is any subset R (possibly empty) of

A× B . Given a relation R between A and B , the set

{x 1 ∈ A : there exists x 2 ∈ B such that (x 1, x 2) ∈ R},

is called the domain of R and is denoted by dom(R). The set

{x 2 ∈ B : there exists x 1 ∈ A such that (x 1, x 2) ∈ R}

is called the range of R and is denoted by range(R). When A = B , a relation

R between A and A is also called a relation on (or over) A. We will also use

the notation x 1Rx 2 as an alternate to (x 1, x 2) ∈ R. We say a relation R on

set S to have the property listed in the left-hand column of Table 2.1 iff the

corresponding condition in the right-hand column is satisfied for all x 1, x 2, x 3

in S .

A relation R is an equivalence relation if it is reflexive, symmetric and

transitive.

A relation R on a set A is a partial order iff R is reflexive, transitive and

antisymmetric. A partial order is often denoted by the symbol �.

Given a partial order � on a set A, given any subset X of A, X is a chain

iff for all x , y ∈ X , either x � y or y � x . The strict order � associated with

� is defined as follows: x 1 � x 2 iff x 1 � x 2 and x 1 6= x 2.

Preliminaries 11

Property Condition:

For all x1, x2, x3 in S

1. Reflexivity x 1Rx 1.

2. Irreflexivity x 1Rx 1 is false for all x 1 in S .

3. Transitivity x 1Rx 2 and x 2Rx 3 imply x 1Rx 3.

4. Symmetry x 1Rx 2 implies x 2Rx 1.

5. Antisymmetry If x 1Rx 2 and x 2Rx 1 then x 1 = x 2.

Table 2.1: Properties of binary relations.

A binary relation � is called well-founded on set S if there are no infinite

descending chains, that is, no infinite sequences of elements x 1, x 2, . . . , x n , . . .

in S such that x 1 � x 2 � . . . � x n �

The reflexive closure of a binary relation R on a set S is the minimal

reflexive relation on S that contains R. Thus x 1R′x 1 for every element x 1 of

S and x 1R′x 2 for distinct elements x 1 and x 2, provided that x 2R′x 1.

Let A and B be non-empty sets. A function (or mapping) f from A into B

is a binary relation between A and B having the special property that if x 1fx 2

and x 1fx 3 then x 2 = x 3. One usually writes x 2 = f (x 1), instead of x 1fx 2.

The element f (x 1) of B is called the value of f at x 1 and the association that

defines f can be written f : x 1 → f (x 1) and can be read f maps x 1 to f (x 1).

A relation of arity n is a set of n-tuples over some domain. The fact

that (x 1, . . . , x n) ∈ R is often denoted by R(x 1, . . . , x n). A function (or

a mapping) of arity n can be viewed as a constrained relation, containing

(n + 1)-tuples, where the first n elements uniquely define the (n + 1)st ele-

ment. That is, one cannot have two (n + 1)-tuple that agree on their first n

elements but differ in their (n + 1)st element. A function f over the domains

D1,D2, . . . ,Dn that results in a value from the domain Dn+1 will be denoted

by f : D1 × . . .×Dn → Dn+1.

Given two sets I and X , an I-indexed sequence (or sequence) is any func-

tion A : I → X , usually denoted by (Ai)i∈I . The set I is called the index

set. If X is a set of sets, (Ai)i∈I is called a family of sets.

2.3 Strings and languages

A string is a (finite or infinite) sequence over some predefined finite set called

an alphabet. A (finite or infinite) set L of strings over some alphabet is called

a language. Since a language is a set (of strings), it can be defined by using

12 Chapter 2

the usual set notation.

There are several useful operations on strings that will be used in the

sequel:

• Concatenation: connecting two or more strings together in some order;

usually written in the required order and separated with ’.’ or ’◦’.
For example, three string ab,ca,and dc can be concatenated, ab.ca.dc,

resulting a new string abcadc.

• Set operators such as ∪,∩, or \ may be used to form a language from

other given languages. Since languages are sets of strings, the set com-

parison relations ⊆,= and ⊇ can also be used to compare between

them.

Given a string u, a string v is a prefix of u if there is a string w such that

u = vw . A string v is a suffix of u if there is a string w such that u = wv . A

string v is a sub-string of u if there are strings x and y such that u = xvy .

Let Σ be a non-empty set. Σ∗ and Σω denote the sets of finite and infinite

sequences, respectively, of elements of Σ (Σ-sequences, for short). A special

string, denoted by ε (where ε is not in the alphabet Σ), is the empty string,

containing no letters. Σ+ = Σ∗ \ {ε} denotes the set of non-empty finite

Σ-sequences. Let σ = s0s1 . . . ∈ Σ∗ ∪ Σω be a Σ-sequence and i ∈ N, then

• for 0 ≤ i < |σ|, σ[i] denotes the i -th element s i of σ,

• for 0 ≤ i < |σ|, σ[..i] denotes the finite sequence s0s1, . . . , s i ∈ Σ+ (the

prefix of σ up to and including s i) and

• for 0 ≤ i < |σ|, σ[i ..] denotes the sequence s i , s i+1, . . . ∈ Σ∗ ∪ Σω (the

suffix of σ starting at s i).

2.4 Graphs

Let V be a finite, non-empty set and E be a binary relation on V . Then

G = (V ,E) is called a directed graph, or digraph. An element of V is called

a vertex or node and an element of E is called an edge. If e = (n1, n2) is an

edge in E , then n1 is called the source of e and n2 is called the target of e.

One may also say that e is an outgoing edge of n1 and an ingoing edge of n2.

The number of ingoing and outgoing edges of a node n is called in-degree

and out-degree of n, respectively.

Digraphs are usually depicted using diagrams like one in Figure 2.1 [93].

In this graph, E is the binary relation {(n1, n2), (n2, n3), (n2, n5), (n3, n1),

Preliminaries 13

(n3, n4), (n4, n4), (n4, n8), (n5, n6), (n5, n9), (n6, n7), (n7, n8), (n8, n5), (n9,

n7)} over the set {n1, n2, n3, n4, n5, n6, n7, n8, n9}. In such a diagram, nodes

are shown as circles and edges are represented as arrows stretched between

the circles representing related nodes.

n2

n3

n4

n8

n5 n6

n9

n7

n1

Figure 2.1: A directed graph.

An edge such as (n4, n4) is called an self-loop. A digraph with no self-loops

is called loop-free. Thus, a digraph (V ,E) is loop-free iff E is a irreflexive

relation.

If the relation E is symmetric, i.e. if for each (s , r) ∈ E we also have

(r , s) ∈ E , then the graph is called undirected and the edges are usually

represented by lines, instead of arrows, connecting two related nodes.

Some additional components may be included in a graph. A graph may

contain labels on the nodes, the edges or both. Given a set of labels L, an

edge labeling function ` : E → L assigns to each edge in E an element

of L. In this case, the graph is a quadruple (V ,E ,L, `). Labels can allow

us to distinguish between edges when there is more than one edge between

certain pairs of nodes. Then the edges can also be redefined as triples over

V × L × V , so that each edge contains the source node, the label and the

target node. In this case, the edge labeling function ` for an edge (s , a, r)

returns the projection on the middle component a of the edge (s , r).

A path is a (finite or infinite) sequence of nodes of V , n0, n1, . . . , nk , . . .

such that each adjacent pair of nodes n i , n i+1 forms an edge (n i , n i+1) ∈ E .

A path is simple if no node on it appears more than once. Notice that in

an infinite path over a finite graph, at least one of the nodes must repeat

infinitely many times. A cycle is a finite path that begins and ends with the

14 Chapter 2

same node. The length of a path is the number of edges that appear on it,

including repetitions (hence, the number of nodes on a path is one more than

the length of the path). Consequently, for each node there is a trivial path

from the node to itself of length 0. In the graph of Figure 2.1, there is a simple

path n1, n2, n3, n4, n8, n5, n9, n7 of length 7. The path n5, n6, n7, n8, n5 is a

cycle, whose length is 4.

A subset of nodes V ′ ⊆ V in a graph is called a strongly-connected sub-

graph (scs) if there is a path between any pair of nodes in V ′, passing only

through nodes in V ′. A strongly connected component (scc) or maximal

strongly connected subgraph (mscs) is a maximal set of such nodes, i.e. one

cannot add any node to that set of nodes and still maintain strong connec-

tivity. A trivial scc is a scc consisting of one node without a self-loop.

The graph in Figure 2.1 has five scss: {n1, n2, n3}, {n4}, {n5, n6, n7, n8},
{n5, n7, n8, n9}, and {n5, n6, n7, n8, n9} and three of them are sccs, namely

{n1, n2, n3}, {n4} and {n5, n6, n7, n8, n9}.
A rooted graph is an arbitrary graph with one of its nodes is labeled in

a special way so as to distinguish it from other nodes. The special node is

called the root of the graph. A tree is a cycle-free rooted digraph whose set

of nodes is not empty. The root of a tree has in-degree 0 and every node

other than the root has in-degree 1. For every node n of a tree there is a

path from the root to n. If there is a path from a node n1 to a node n2 in a

tree, then n2 is called a successor of n1 and n1 is a predecessor of n2.

2.5 Classical logic

There are many useful logics that differ in what concepts are being considered

and in what the basic features of these concepts are thought to be. In the

family of formal logics, one is central: classical logic. It is the most widely

used logic, the logic underlying mathematics as it is generally practiced and

on the top of which many others have been built.

In the following we present some concepts and notions of classical logic

including propositional and first order logic.

2.5.1 Propositional logic

A logical language is given by an alphabet of symbols and the definition of a

set of strings over this alphabet called formulas. The simplest kind of such a

language is a language Lp of (classical) propositional logic that can be given

as follows.

Preliminaries 15

2.5.1.1 Syntax

Alphabet

The alphabet of Lp consists of a constant symbol false, a countable set of

propositional letters V and symbols →, (and).

Atomic formulas

Every atomic proposition v ∈ V and false is an atomic formula.

Formulas

The inductive definition of formulas is given as follows.

1. Every atomic formula is a formula.

2. If F and G are formulas then (F → G) is a formula.

Abbreviations

Further logical operators and a constant can be introduced to abbreviate

particular formulas:

• ¬F for F → false,

• F ∨G for (¬F)→ G ,

• F ∧G for ¬(¬F ∨ ¬G),

• F ↔ G for (F → G) ∧ (G → F) and

• true for ¬false.

Notice that we omit surrounding parentheses.

Sub-formulas

Occasionally, we will need the notion of sub-formulas. Informally, a sub-

formula of a formula is a substring that, itself, is a formula.

Definition 2.1 (immediate sub-formula) Immediate sub-formulas are de-

fined as follows:

1. An atomic formula has no immediate sub-formulas.

2. The immediate sub-formulas of (F → G) are F and G.

16 Chapter 2

Definition 2.2 (sub-formula of Lp) Let F be a formula. The set of sub-

formulas of F is the smallest set S that contains F and contains, with each

member, the immediate sub-formulas of that member. F is called an improper

sub-formula of itself.

2.5.1.2 Semantics

The semantics of such a language Lp is based on the concept of (Boolean)

valuation, which is a mapping

s : V → {tt, ff}
where tt and ff are called truth values (representing ”true” and ”false”, re-

spectively). Every s can be deductively extended to the set of all formulas:

• s(false) = ff

• s(v) for v ∈ V is given

• s(F → G) = tt iff s(F) = ff or s(G) = tt

Validity

A formula F is called valid in s (denoted by |=s F) if s(F) = tt. F is called

valid or tautology (denoted by |= F) if |=s F holds for every s .

2.5.2 First order logic

Starting from some atomic formulas of which no further details are given,

propositional logic investigates the logic operation such as ¬,→ ∨,∧, etc.

We now present a logic based on propositional logic which additionally looks

closer at the structure of atomic formulas and allows quantification. We call

such logic first-order predicate logic.

A (classical) first-order language is given as follows.

2.5.2.1 Syntax

Alphabet

The alphabet of first order logic consists of the alphabet of Lp , additional

connection symbols ’:’, ’,’, and ’=’, quantifier symbol ∃ and a set V of

variable symbols x , y , z ,

Preliminaries 17

Functions and predicates

A first-order language is determined by specifying a finite set F of function

symbols and a finite set P of predicate symbols. The first-order language

determined by F and P is denoted by L(F ,P).

Terms

The family of terms of L(F ,P) is the smallest set meeting the conditions:

1. Any variable is a term.

2. If f is an n-ary function symbol (member of F) and t1, . . . , tn are terms,

then f (t1, . . . , tn) is a term.

A term is closed if it contains no variables.

Atomic formulas

An atomic formula of L(F ,P) is false or any string of the form P(t1, . . . , tn)

where P is an n-ary predicate symbols (member of P) and t1, . . . , tn are

terms of L(F ,P).

Formulas

The family of formulas of L(F ,P) is the smallest set meeting the following

conditions:

1. Any atomic formula is a formula.

2. If t1 and t2 are terms then t1 = t2 is a formula.

3. If F and G are formulas so is (F → G).

4. If P is an n-ary predicate symbol (member of P) and t1, . . . , tn are

terms, then P(t1, . . . , tn) is a formula.

5. If F is a formula and x is a variable, then ∃ x : F is a formula.

Abbreviations

In addition to the abbreviations as in Lp , the formula of the form ∀ x : F is

introduced as the abbreviation of the formula ¬(∃ x : ¬F).

18 Chapter 2

Occurrence of variables and substitutions

The occurrence of a variable x in some formula F is called bound if it appears

in some sub-formula ∃ x : G , consequently in ∀ x : G , of F . Otherwise it is

called free.

If t is a term then F [t/x] denotes the result of substituting t for every free

occurrence of x in F . When writing F [t/x] we always assume implicitly that

t does not contain a variable which occur bound in F . (This can always be

achieved by replacing the bound variables of F by others.)

2.5.2.2 Semantics

The basic semantical concept of first-order logic is the following:

Structure

A structure I for L(F ,P) consists of

1. a set |I | 6= ∅, called universe,

2. an n-ary function I(f) : |I|n → |I| for every n-ary function symbol f

in F ,

3. an n-ary relation I(P) ⊂ |I|n for every n-ary predicate symbol P in P .

Variable valuation

A variable valuation ξ (with respect to I) is a mapping ξ : V → |I | which

assigns some ξ(x) ∈ |I | to every variable x of L(F ,P).

Term semantics

A structure I together with a variable valuation ξ defines a value I ξ(t) ∈ |I |
for every term t :

1. Iξ(x) = ξ(x) for every variable x .

2. Iξ(f(t1, . . . , tn)) = I(f)(Iξ(t1), . . . , Iξ(tn)).

Formula semantics

The semantics of formulas, relative to some interpretation I and some valu-

ation ξ : V → |I | is inductively defined as follows:

1. Iξ(false) = ff.

2. I ξ(t1 = t2) = tt iff I ξ(t1) = I ξ(t2), where = denotes equality in |I |.

Preliminaries 19

3. I ξ(F → G) = tt iff I ξ(F) implies I ξ(G).

4. Iξ(P (t1, . . . , tn)) = tt iff (I ξ(t1), . . . , (tn)) ∈ I ξ(P) for every P in P .

5. Iξ(∃x : F) = tt iff Iζ(F) = tt for some valuation ζ such that ξ(y) =

ζ(y) for all y 6= x .

Validity

A formula F of L(F ,P) is called valid in I (denoted by |=I F) if I ξ(F) = tt

for every ξ. F is called valid or tautology (denoted by |= F) if |=I F holds

for every I .

20 Chapter 2

Chapter 3

Properties and Temporal Logic

3.1 Overview

This chapter is about the properties of reactive systems. Whereas in Section

3.2 we deal with a very general definition of properties as arbitrary subsets of

infinite runs, in Section 3.3 we give the definition of the syntax and semantics

of TLA* introduced by Merz [83]. We also present the general form of

specification we will use in this sequel and describe briefly the issues on

machine-closed. Then we introduce the writing style for writing specifications

in the next sections. A short remark will be given in the end of this chapter.

3.2 Properties of reactive systems

Let Σ be a set (of states). Informally Σ may be thought of as the set of states

a reactive system may assume. A run of the system can be represented as

an infinite sequence σ = s0s1 . . . ∈ Σω. A (Σ−)property P is any set P ⊆ Σω

of runs.

To introduce some structure into the class of properties, two basic classes

of properties are usually distinguished in the literature, namely safety pro-

perties and liveness properties.

3.2.1 Safety properties

Safety properties are formally defined as follows:

Definition 3.1 (safety property) A property P ⊆ Σω is a safety property iff

for every σ ∈ Σω,

σ ∈ P ←→ ∀i ≥ 0 : ∃τ ∈ Σω : σ[..i]τ ∈ P.

21

22 Chapter 3

A safety property is true for an infinite behavior σ iff it is true for all

finite prefixes of σ. Informally, P is a safety property if for every run σ not

contained in P there is a finite prefix σ[..i] which can not be complemented

by any sequence τ ∈ Σω to obtain a run σ[..i]τ in P . Stated differently, for

every σ /∈ P something ”bad” must have happened after some finite number

of steps which cannot be remedied by any future behavior. In Lamport’s

popular characterization, safety property express that ”something bad never

happens”.

The class of safety properties is closed under intersection and union.

Lemma 3.2

•
⋂
i∈I

Pi is a safety property if all P i (for i ∈ I) are safety properties.

• Let P1, . . . ,Pn be safety properties. Then
n⋃
i=1

Pi is a safety property.

Notice that in general only finite unions of safety properties are themselves

safety properties.

For every property P there is a safety property S such that S ⊇ P .

By Lemma 3.2, there is a smallest safety property (w.r.t. set inclusion)

containing P .

Definition 3.3 (safety closure) Let P be any property. The safety closure

of P, written safe(P), is the smallest safety property containing P,

safe(P) =
⋂
{S ⊆ Σω : S is a safety property and P ⊆ S}.

3.2.2 Liveness properties

Liveness properties are formally defined as follows:

Definition 3.4 (liveness property) A property P ⊆ Σω is a liveness property

iff

∀σ ∈ Σ∗ : ∃τ ∈ Σω : στ ∈ P.

Properties and Temporal Logic 23

A liveness property is true for every finite behavior. In contrast to safety

properties, a liveness property P can never be refuted by observing only a

finite prefix of some run in P , hence, in the words of Lamport, P states

that ”something good eventually happens”.

For a liveness property P , it is obvious from the definition that every

property Q ⊇ P is also a liveness property. In particular, arbitrary unions of

liveness properties yield liveness properties. In general, however, even finite

intersection of liveness properties are not liveness properties. For example,

consider two sets P and Q where:

• P = {σ ∈ Σω : ∃i ≥ 0 : ∀j ≥ i : σ[j] = s} and

• Q = {σ ∈ Σω : ∀i ≥ 0 : ∃j ≥ i : σ[j] 6= s},

where s ∈ Σ is some designated state. It is easy to verify that both P and

Q are liveness properties (assuming that Σ contains at least two different

states) whereas P ∩Q = ∅ which is certainly not a liveness property.

3.2.3 Specification

In general, a specification is simply a property. However, it is usually conve-

nient to give some structure to specifications.

To describe specifications formally, we represent a program by a state

machine (or transition system) M and a supplementary property L, with

intent that M defines the safety property of the specification and L defines

the liveness property.

Definition 3.5 (transition system) A transition system is a triple M =

(Σ, I ,R) where

• Σ is a set (of states),

• I ⊆ Σ is the set of initial states and

• R ⊆ Σ× Σ is the transition relation.

The property defined by a transition system M , also denoted by M , is

defined by

M = {s0, s1, . . . ∈ Σω : s0 ∈ I and (s i , s i+1) ∈ R for all i ∈ N}.

24 Chapter 3

A specification is a pair S = (M ,L) where M = (Σ, I ,R) is a transition

system and L ⊆ Σω is the supplementary property of S . The property defined

by a specification S , which also denoted by S , is defined as

S = M ∩ L.

A state machine M is identified with the specification (M ,Σω), whose

supplementary property is trivial.

It is sometimes preferable to give some additional structure to the sup-

plementary property itself. In particular, L may (in part) be given by

sets of fairness constraints on actions. A fair transition system is a pair

F = (M , (W ,S,L)) where M = (Σ, I ,R) is a transition system, L ⊆ Σω is a

supplementary property as above, and W and S are subsets of Σ × Σ. The

property F ⊆ Σω defined by a fair transition system F is defined by σ ∈ F

iff

• σ ∈ M

• for all α ∈ W , there are infinitely many i ∈ N such that σ[i] /∈ dom(α)

or (σ[i], σ[i + 1]) ∈ α

• for all α ∈ S, there exists some i ∈ N such that σ[j] /∈ dom(α) holds for

every j ≥ i or there are infinitely many i ∈ N such that (σ[i], σ[i +1]) ∈
α

• σ ∈ L.

3.3 TLA*

The previous section dealt with a very general definition of property as arbi-

trary subsets of infinite runs. We now present TLA*, the logic that we use to

describe our methods for representing and reasoning about reactive systems.

3.3.1 Propositional TLA* (pTLA*)

3.3.1.1 Syntax

Alphabet

The alphabet of pTLA* consists of the alphabet of propositional logic Lp

and additional symbols 2, [,] and ◦.

Properties and Temporal Logic 25

Formulas and preformulas

Definition 3.6 Formulas and preformulas of pTLA* are inductively defined

as follows.

1. false is a formula, as is every atomic proposition v ∈ V.

2. If F ,G are formulas then F → G and 2F are formulas.

3. If A is a preformula and v ∈ V then 2[A]v is a formula.

4. If F is formula then F and ◦F are preformulas.

5. If A,B are preformulas then A→ B is a preformula.

For a (pre-)formula A, we denote by At(A) the set of atomic propositions

that occur in A.

For writing formulas, we will use symbols such as F ,G for formulas and

A,B for preformulas. Notice that 2[...]v is considered to be a separate oper-

ator for all v ∈ V .

Abbreviations

We use the abbreviation of propositional logic Lp for both formulas and

preformulas. We sometimes write v ′ instead of ◦v when v ∈ V is an atomic

proposition. For (possibly primed) atomic propositions we sometimes use the

equality symbol to denote equivalence, and write, for example w ′ = v instead

of w ′ ↔ v . If V = {v 1, . . . , vn} ⊆ V is a finite set of atomic propositions,

we write V ′ = V for the preformula v′1 = v1 ∧ . . . ∧ v′n = vn and 2[A]V or

2[A]v1,...,vn to denote the formula 2[A]v1 ∧ . . . ∧2[A]vn .

In particular, 2[A]∅ is equal to true. We write 3F for the formula ¬2¬F

and 3〈A〉v for ¬2[¬A]v . Consequently, 3〈A〉v1,...,vn denotes 3〈A〉v1 ∨ . . . ∨
3〈A〉vn .

3.3.1.2 Semantics

A state is a boolean valuation as in propositional logic, i.e. s : V → {tt, ff}
of the atomic propositions. A behavior σ = s0s1 . . . is an infinite sequence of

states. Notice that since a behavior is a sequence, the conventional notations

for a sequence (described in Section 2.3) also hold for it.

We now define what it means for a preformula or a formula to hold of a

behavior σ, written σ|≈ A or σ |= F , respectively. Because every formula is

also preformula, this also defines the semantics of formulas.

26 Chapter 3

Definition 3.7 (semantics of (pre-)formulas) The semantics of preformulas

is given by the relation |≈, which is inductively defined as follows:

σ|≈6 false.

σ|≈ v iff s0(v) = tt (for v ∈ V).

σ|≈ A→ B iff σ|≈ A implies σ|≈ B.

σ|≈ 2F iff σ[i ..]|≈ F holds for all i ∈ N.

σ|≈ 2[A]v iff for all i ∈ N, s i(v) = s i+1(v) or σ[i ..]|≈ A.

σ|≈ ◦F iff σ[1..]|≈ F .

For a formula F , we usually write σ |= F instead of σ|≈ F .

A behavior σ such that σ |≈ A holds is called a model of A. We say that

a formula F is valid over a behavior σ iff σ[n..] |= F holds for all n ∈ N.

Finally, F is valid (written |= F) iff it is valid over all behaviors.

3.3.1.3 Stuttering invariance

pTLA* is invariant under stuttering. In this section we describe what it

means for a logic to be invariant under stuttering.

Definition 3.8 Let V ⊆ V.

1. Two states s , t are called V-similar, written s =V t, iff s(v) = t(v) for

all v ∈ V . Two behaviors σ, τ are called V -similar iff si =V ti holds

for all i .

2. V-stuttering equivalence, written 'V , is the smallest equivalence rela-

tion on behaviors that identifies ρ ◦ 〈s〉 ◦ σ and ρ ◦ 〈tu〉 ◦ σ, for any

finite sequence of states ρ, infinite sequence of states σ, and pairwise

V -similar states s , t , u.

3. Stuttering equivalence (written ') is V-stuttering equivalence.

It follows that σ 'V τ implies σ 'W τ whenever W ⊆ V . In particular,

stuttering equivalence is the finest relation among all 'V . Note also that two

states s , t are V-similar iff they are equal.

A logic is invariant under stuttering when none of its formulas can dis-

tinguish between two stuttering-equivalent behaviors.

Given two behaviors σ = s0s1 . . . and τ = t0t1 . . . such that σ 'V τ holds

then

1. t0 =V s0.

Properties and Temporal Logic 27

2. For every n ∈ N there is some m ∈ N such that both σ[n..] 'V τ [m..]

and σ[n + 1..] 'V τ [m + 1..].

Replacing maximal finite repetitions of V -similar states by a single oc-

currence of, say, the first of these states, it follows that for any behavior σ

there exists a V -stuttering equivalent behavior \Vσ = s0s1 . . . that contains

successive V -similar states only if it ends in V -stuttering, that is, for all

i ∈ N, si =V si+1 holds only if si =V sj for all j ≥ i . We call any such

behavior \Vσ a V-stuttering free variant of σ. Two behaviors σ, τ are V -

stuttering equivalent if and only if \V σ =V \V τ holds, where \Vσ and \V τ

denote arbitrary V -stuttering free variants of σ and τ .

The following theorem can be used to prove that every pTLA* formula

is invariant under stuttering.

Theorem 3.9 (stuttering invariance) Assume that A is a preformula, F is

a formula and that σ, τ are behaviors.

1. If σ 'At(A) τ and σ[1..] 'At(A) τ [1..] then σ|≈ A iff τ |≈ A.

2. If σ 'At(F) τ then σ |= F iff τ |= F .

The proof of Theorem 3.9 can be found in [83].

3.3.2 Quantified TLA* (qpTLA*)

3.3.2.1 Syntax

We now formally define the extension of TLA* by quantification over propo-

sition variables (qpTLA*).

Definition 3.10 (syntax of qpTLA*) The (pre-)formulas of qpTLA* are

given inductively as in Definition 3.6, except by adding the following clause:

6. If F is a formula and x ∈ V is an atomic proposition then ∃∃∃∃∃∃ x : F is

a formula.

Occurrence of variables

We use standard conventions regarding free and bound propositions in formu-

las and preformulas. In particular, we define the set At(G), for F ≡ ∃∃∃∃∃∃ v : G ,

to be At(G) \ {v}, since v becomes bound by the quantifier.

28 Chapter 3

Substitution

If F ,G are formulas and x is proposition then F [G/x] denoted the formula

obtained from F by replacing every free occurrence of x in F by the formula

G . If any propositions free in G would become bound by this replacement,

we silently assume that bound propositions in F are suitably renamed to

avoid such capture of free propositions.

Quantification

Informally, the formula ∃∃∃∃∃∃ x : F is true of behavior σ if F is true for some

behavior τ that differs from σ by the values assigned to x . In other words,

quantification is over an ω-sequence of values rather than over single val-

ues. We also introduce quantification over values. We thus define (for both

formulas and preformulas)

∃ x : F ≡ F [true/x] ∨ F [false/x]

using different symbols to distinguish (rigid) quantification over values from

(flexible) quantification. In either case, universal quantification is defined in

the standard way as the dual of existential quantification:

∀∀∀∀∀∀ x : F ≡ ¬∃∃∃∃∃∃ x : ¬F and ∀ x : F ≡ ¬∃ x : ¬F .

3.3.2.2 Semantics

Definition 3.11 For x ∈ V we define the relations =x and ≈x on behaviors

as follows:

1. Two behaviors σ = s0s1 . . . and τ = t0t1 . . . are equal up to x , written

σ =x τ if si(v) = ti(v) for all i ≥ 0 and v ∈ V, except possibly x .

2. The relation ≈x, called similarity up to x , is defined as ≈x= (' ◦ =x

◦ '), where ' is stuttering equivalence and ◦ denotes relational com-

position.

The semantics of quantification is now defined in terms of ≈x instead of

=x in order to ensure invariance under stuttering.

Definition 3.12 (semantics of qpTLA*) The semantics of qpTLA* is ob-

tained by adding the following clause to Definition 3.7

σ |= ∃∃∃∃∃∃ x : F iff τ |= F holds for some τ ≈x σ.

Properties and Temporal Logic 29

Definition 3.12 ensures that formulas of qpTLA* are invariant under stut-

tering equivalence.

Theorem 3.13 For any qpTLA* formula F and behaviors σ and τ where

σ ' At(F)τ ,

σ |= F iff τ |= F .

3.3.3 First order TLA*

The extension of propositional TLA* to a full first-order temporal logic is

essentially straightforward. In order to simplify the notation, in the first

order TLA*, primed flexible variables included in the base syntax of first

order TLA*. Otherwise, (rigid) quantification would be necessary to refer to

the value of a variable at the successor state.

3.3.3.1 Syntax

Assume given a language L(F ,P) of first-order logic that defines sets F and

P of function and predicate symbols, each equipped with an arity n ≥ 0.

Assume further given a set X = X r∪X f of variables, partitioned into disjoint

sets X r and X f of rigid and flexible variables. (We assume that X does not

contain symbols of the form x ′.) The terms and formulas of TLA* are defined

much as in classical first order logic; we also define transition terms that may

contain primed flexible variables and are used in the definition of preformulas.

Terms

The terms of TLA* are inductively defined as follows.

1. Every variable x ∈ X is a term.

2. If t1, . . . , tn are terms and f is an n-ary function symbol then f (t1, . . . ,

tn) is a term. For n = 0 we usually write f instead of f ().

Transition terms

The transition terms of TLA* are defined similarly:

1. Every variable x ∈ X is a transition term. For a flexible variable

v ∈ X f , also v ′ is a transition term.

2. If t1, . . . , tn are transition terms and f is an n-ary function symbol then

f (t1, . . . , tn) is a transition term.

For a term t , we denote by t ′ the transition term obtained from t by

replacing every flexible variable v in t by v ′.

30 Chapter 3

Formulas and preformulas

Formulas and preformulas of TLA* are inductively defined as follows.

1. false is a formula.

2. If t1, . . . , tn are terms and P is an n-ary predicate symbol then P(t1, . . . , tn)

is a formula. If t1 and t2 are terms then t1 = t2 is a formula.

3. If F ,G are formulas then F → G and 2F are formulas.

4. If A is a preformula and t is a term then 2[A]t is a formula.

5. If F is a formula and x ∈ X r is a rigid variable then ∃x : F is a

formula.

6. If F is a formula and x ∈ X f is a flexible variable then ∃∃∃∃∃∃ x : F is a

formula.

7. If F is a formula then F and ◦F are preformulas.

8. If t1, . . . , tn are transition terms and P is an n-ary predicate symbol

then P(t1, . . . , tn) is a preformula. If t1 and t2 are transition terms

then t1 = t2 is a preformula.

9. If A,B are preformulas then A→ B is a preformula.

10. If A is a preformula and x ∈ X r is a rigid variable then ∃x : A is a

preformula.

Occurrence of variables and substitutions

Free and bound occurrences of variable, and the sets FFV (F) and FRV (F)

of free (flexible or rigid) variables that occur in (pre-)formula F are defined in

the standard way. Note that ∃∃∃∃∃∃ binds unprimed as well as primed occurrences

of the quantified flexible variable.

We use notation analogous to that introduced for (quantified) proposi-

tional TLA*. For example, 2[F]t1,...,tn denotes the formula

2[F]t1 ∧ . . . ∧2[F]tn .

We now write 2[A]F , for a formula F and a preformula A, to denote the

formula 2[A]FFV (F). Substitution is now defined at the level of terms. The

substitution F [t/x] replaces t ′ for x ′ in action subformulas of F .

Properties and Temporal Logic 31

State and action formulas

State formulas are those formulas that do not contain any temporal opera-

tors. Similarly action formulas (actions for short) are those preformulas that

are built from (possible primed) variables, function and predicate symbols

(including =), and first-order connectives, but that do not contain any tem-

poral connectives. We sometimes write P ′, for a state formula P , to denote

the action formula obtained from P by replacing every free flexible variable

v in P by its primed counterpart v ′. If A is an action we write

enabled A ≡ ∃ v ′1, . . . , v
′
n : A

to denote the state formula obtained from A existentially quantifying over

all free primed flexible variables v ′1, . . . , v
′
n in A1. Furthermore, if t is a term

(or finite set of terms), we write

WFt(A) ≡ 32enabled 〈A〉t → 23〈A〉t

SFt(A) ≡ 23enabled 〈A〉t → 23〈A〉t

3.3.3.2 Semantics

As in classical first order logic, the semantics of TLA* is defined relative to a

first-order interpretation I that provides a universe |I | and, for all function

and predicate symbols f ∈ F and P ∈ P, interpretations f I and P I , which

are functions and relations of suitable arity. A state is now a valuation

s : X f → |I | of the flexible variables. A behavior is an infinite sequence

σ = s0s1 . . . of states.

For a set X ⊆ X f of flexible variables, the relations =X and 'X are

defined in definitions 3.8. Similarly, for x ∈ Xf the relations =X and ≈ are

defined as in definition 3.11.

Term semantics

Given an interpretation I and a valuation of the rigid variables α : X r → |I |,
the semantics s [[t]]I ,αu of a transition term t at states s and u is inductively

defined as follows:

s [[x]]I ,αu = α(x) for x ∈ X r

s [[v]]I ,αu = s(v) for v ∈ X f

s [[v ′]]I ,αu = u(v) for v ∈ X f

s [[f (t1, . . . , tn)]]I ,αu = f I (s [[t1]]I ,αu, . . . , s [[tn]]I ,αu).

1Note that we use rigid quantification over v ′1, . . . ,n
′
n . To be truly formal, we should

replace all primed occurrences of flexible variables by fresh rigid variables or define the
syntax as in [2]

32 Chapter 3

Because every term is a transition term, the above definition also defines

the semantics of terms. Clearly, the second state u is irrelevant for the

semantics of terms; we will therefore often write s [[t]]I ,α when t is a term.

Formula semantics

The semantics of (pre-)formulas, relative to an interpretation I , a valuation

α : X r → |I |, and a behavior σ = s0s1 . . . is inductively defined as follows:

I , σ, α 6 |≈ false

I , σ, α|≈ P(t1, . . . , tn) iff (s0[[t1]]I ,αs1, . . . , s0[[tn]]I ,αs1) ∈ P I .

I , σ, α|≈ t1 = t2 iff s0[[t1]]I ,αs1 = s0[[t2]]I ,αs1

I , σ, α|≈ F → G iff I , σ, α|≈ F implies I , σ, α|≈ G

I , σ, α|≈ 2F iff I , σ[i ..], α|≈ F holds for all i ∈ N
I , σ, α|≈ 2[A]t iff for all i ∈ N, s i [[t]]I ,σ = s i+1[[t]]I ,α or

σ[i ..]|≈ A

I , σ, α|≈ ∃ x : F iff I , σ, β|≈ F for some valuation β such that

β(y) = α(y) for all y 6= x

I , σ, α|≈ ∃∃∃∃∃∃ v : F iff I , τ, α|≈ F for some behavior τ ' vσ

I , σ, α|≈ ◦F iff I , σ[1..], α|≈ F

If F is a formula, we usually write I , σ, α |= F instead of I , σ, α|≈ F .

The above definition ensures that formulas of first-order TLA* are again

invariant under stuttering equivalence.

Theorem 3.14 Assume that I is a first-order interpretation, σ and τ are

behaviors, and α is a valuation of the rigid variables. For any formula F of

first-order TLA*, if σ ' FFV (F)τ then I , σ, α |= F iff I , τ, α |= F .

3.3.4 Specifications

We now describe the structure of specifications that will be used in this book

for representing reactive systems.

The general form of specification is given by a formula of the form:

∃x : Init ∧2[Next]v ∧ L (3.1)

where

• x is a list of internal variable,

• Init is a state predicate that describes the initial states,

Properties and Temporal Logic 33

• Next is an action characterizes the system’s next-state relation,

• v is a state function, and

• L is a formula stating the liveness conditions expected from the system.

This formula essentially describes a state machine, augmented by live-

ness condition, as described in Subsection 3.2.3, that generates the allowed

behaviors of the system under specification.

Usually, v will be the tuple of all variables appearing free in Init ,Next

and L (including the variables of x). It follows from the definitions that a

behavior satisfies Formula (3.1) iff there is some way of choosing values for

x such that

1. Init is true in the initial state,

2. every step is either an Next step or leaves all the variables in v un-

changed and

3. the entire behavior satisfies L.

Note that Formula 3.1 is the general TLA specification formula proposed

by Lamport [70]. In fact, using TLA* we can write specifications, which

are more complex than this formula. However, we prefer to restrict to this

form due to its simplicity and it has been shown that this form is expressive

enough to represent the classes of systems we will consider, namely discrete,

real-time and parameterized systems.

3.3.5 Machine closed

A finite sequence of states is called a finite behavior. For any formula F and

finite behavior τ , we say that τ satisfies F iff τ can be extended to an infinite

behavior that satisfies F . It can be shown that, for any TLA* formula F ,

there is a TLA* formula C(F), called the closure of F , such that a behavior σ

satisfies C(F) iff every prefix of σ satisfies F . Formula C(F) is the strongest

safety property such that |= F → C(F).

If M is a safety property and L is a supplementary property, then the

pair (M ,L) is machine closed iff every finite behavior satisfying M can be

extended to an infinite behavior in M ∩L. The lack of machine closure can be

a source of incompleteness for proof methods. As illustration, given a safety

property F and we want to prove that M ∩ L satisfies F . Most methods for

proving safety properties use only safety properties as hypotheses, so we can

34 Chapter 3

module spec-name

Specification
...

Theorem
...

Figure 3.1: A module.

prove M ∩L→ F only by proving M → F . If M is not machine closed, then

M ∩ L → F could hold even though M → F does not, and these methods

will be unable to prove that system with specification M satisfies F .

We recall the canonical form of our specification is of the form of ∃∃∃∃∃∃ x :

Init ∧ 2[Next]v ∧ L as stated in Formula (3.1). Thus, in order to have a

machine closed specification, we expect L to constrain infinite behaviors.

This means, formally, that the closure of Formula (3.1) should be the formula

Init ∧2[Next]v .

3.4 Writing specifications

When writing a specification, we sometimes use the TLA+’s writing style

[73], shown in Figure 3.1 where

• module is a keyword,

• spec-name represents the name of our specification and

• Specification is a keyword starting a list of formulas describing the

behavior of the system.

• Theorem is a keyword starting a list of theorems representing the

properties we want to prove.

We also use the notation that of a list of expressions bulleted by ∧ de-

notes their conjunction and a list of expressions bulleted by ∨ denotes their

disjunction. For a tuple v , unchanged v represents v ′ = v , v [i] represents

the i th component of v , [v except !i = e] asserts that the i th component is

equal to e and v ′ = [v except !i = e] asserts that except the i th component

that is equal to e, the rest of components of v ′ is equal to the ones of v .

For formulas A,B and C we sometimes write

Properties and Temporal Logic 35

if A then B and if A then B

else C
for formula A→ B and A→ B ∧ ¬A→ C , respectively.

As illustration we take the so called ”increment problem” [71]. We specify

a system that starts with x and y both equal to 0 and repeatedly increments

x and y by 1. A step increments either x or y (but not both). The variables

are incremented in arbitrary order, but each is incremented infinitely often.

This system might be represented in a conventional programming language

as in Figure 3.2.

initial x = 0, y = 0;

cobegin

loop forever loop forever

x : = x + 1 || y : = y + 1

end loop end loop

coend

Figure 3.2: Increment problem: Pseudocode representation.

The specification for the increment problem is given in Figure 3.3. Notice

that we assume x and y are natural numbers and we want to prove that the

system preserves this property.

3.5 Remarks

The notion of safety and liveness properties have been first introduced by

Lamport [68]. Informally, a safety property expresses that ”something (bad)

will not happen” during a system execution. A liveness property expresses

that eventually ”something (good) must happen” during an execution. The

distinction of safety and liveness properties was motivated by the different

techniques for proving those properties. For example, Owicki & Lamport

[90] proposed the technique of proof lattices for liveness properties. Later,

in [3] Lamport made his informal characterization of safety property more

precise. A property is called a safety property iff each execution violating

the property has a finite prefix violating that property, and vice versa, if a

finite prefix of an execution violates the property then the execution itself

violates the property. This corresponds to the intuition that the ”bad thing”

(i.e. violating the property) can be detected in a finite initial part of the

36 Chapter 3

module increment

Specification
X ≡ ∧ x ′ = x + 1

∧ unchanged 〈y 〉
Y ≡ ∧ y ′ = y + 1

∧ unchanged 〈x 〉
Inc ≡ ∧ x = 0 ∧ y = 0

∧ 2[X ∨Y]〈x ,y 〉
∧ WF〈x ,y 〉(X) ∧WF〈x ,y 〉(Y)

Theorem
1. Inc → 2(x , y ∈ N)

Figure 3.3: Module increment.

execution and the occurrence of the ”bad thing” in a prefix of an execution

is irremediable.

Alpern & Schneider [4] were the first to give a formal definition of

both safety and liveness properties. In contrast to Lamport, they repre-

sented a finite prefix of an execution as the set of all possible continuations

from that point on, which leads to a slighty more general notion of safety

properties. A property is a liveness property, iff it contains at least one con-

tinuation for every finite prefix. This corresponds to the intuition that the

”good thing” (i.e. satisfying the property) can still happen after any finite

execution.

Another classification of properties is also given by Manna & Pnueli

in [76, 81]. They introduced a hierarchy of properties which agrees with

the classification given here on the safety properties. More issues on the

classification of properties can be found, for example, in [5, 6, 100, 97] and

[60].

The generalized Temporal Logics of Actions (TLA*) is proposed by Merz

[83]. It is a variant of linear-time temporal logic, inspired by Lamport’s

Temporal Logic of Actions [69, 71]. In the other direction, TLA can be viewed

as the sub-logic of TLA* obtained by restricting preformulas to be actions.

As in TLA, in TLA*, systems as well as their properties are represented

by formula. The difference from TLA is that it is based on a symmetrical,

mutually recursive definition of (stuttering sensitive) preformulas and (stut-

tering invariant) formulas rather than a layer of formulas on top of a layer of

non-temporal action formulas. We choose this logic because of its complete

axiomatization which will be very beneficial for deductive verification.

More issues on machine closed can be consulted, for example, in [1].

Chapter 4

Automata on infinite words

4.1 Overview

Automata theory plays an important role in computer science. Various kinds

of automata are used, for example, for compilation, natural language analysis,

complexity theory and hardware design. Automata theory also fits well in

the domain of modeling and verification of systems.

A finite automaton is a mathematical model of a device that has a con-

stant amount of memory, independent of the size of its input [32]. Modeling

systems using transition systems and using automata to specify properties

of the systems, i.e. using the same kind of representations to describe both

systems and their properties, brings a lot benefits. One can then perform

automatic verification by exploring graph algorithms.

Automata that operates on infinite objects such as ω-words, trees or

graphs have been important tools for the analysis of temporal and related

logics since the pioneering work by Büchi [24], Muller [86], McNaughton

[84], Rabin [96], and Vardi&Wolper [109].

In this chapter, we will consider a class of finite automata over infinite

words, called Muller automata [86]. First, we give the formal definition of

Muller automata. An algorithm for translating pTLA* formulas into Muller

automata will be given in Section 4.3, which is the main contribution of

this chapter. After presenting timed automata, which is the extension of

ω-automata with a finite set of real-valued clocks in Section 4.4, we conclude

this chapter by giving a brief discussion and some related work.

37

38 Chapter 4

4.2 Muller automata

Definition 4.1 (Muller automaton) A Muller automaton M over an

alphabet ΣM is a tuple (Q , Q0,∆,F) such that

• Q is a finite set of locations,1

• Q0 ⊆ Q is a finite set of initial locations,

• ∆ ⊆ Q × ΣM ×Q is a transition relation and

• F ⊆ 2Q is a set of sets of locations.

A run of M over an ω-word w = x0x1 . . . ∈ Σω
M is an infinite sequence

π = q0q1 . . . of locations q i ∈ Q such that q0 ∈ Q0 and (q i , x i , q i+1) ∈ ∆

holds for all i ∈ N.

Let inf(π) denote the set of locations which appear infinitely often in π.

A run π = q0q1 . . . is accepting if inf(π) ∈ F .

A word w = x 0x 1 . . . is called accepted if there exists an accepting run of

M over w.

The language L(M) ⊆ Σω
M is the set of accepted words.

In a graph representing an automaton we mark initial locations with

an incoming arrow that is not connected to any other node. An example

of Muller automaton is given in Figure 4.1. The acceptance set is given

by {{q1}, {q0, q1}}. This automaton accepts all words over the alphabet

ΣM = {a, b} that contain b infinitely often.

a

b

q1

b

q0

a

Figure 4.1: An example of Muller automaton.

Given two Muller automata M1 and M2 over ΣM, one can build an

automaton that accepts L(M1) ∩ L(M2) using Construction 4.2.

1We use the term locations rather than conventional states to avoid confusion with the
states of transition systems and temporal logic.

Automata on infinite words 39

Construction 4.2 (product automaton) Let M1 = (Q1, Q
0
1,∆1,F1) and

M2 = (Q2, Q
0
2,∆2,F2) be two Muller automata over ΣM. The product of

M1 and M2 is an automaton Mp = (Qp, Qp
0,∆

p,Fp) over ΣM such that

1. Qp = Q1 ×Q2;

2. Qp
0 = Q1

0 ×Q2
0;

3. ((q1, q2), x, (q′1, q
′
2)) ∈ ∆p iff (q1, x, q

′
1) ∈ ∆1 and (q2, x, q

′
2) ∈ ∆2; and

4. Fp = Fp1 ∩ F
p
2 where Fp1 = F1 ×Q2 and Fp2 = Q1 ×F2.

4.3 From pTLA* to Muller-automata

We now consider the following problem: given a pTLA* (pre-)formula A,

construct a Muller automaton that accepts exactly the behaviors satisfying

A.

The central part of the automaton construction algorithm is a tableau-like

procedure related to the ones described in [51, 32, 93]. This procedure builds

a graph, which will define the locations and transitions of the automaton.

For a given (pre-)formula A we first construct the formula graph of A,

which is a rooted graph whose every node contains a set of sub-(pre-)formulas

of A representing all sub-(pre-)formulas of A that can hold together on a

position in the model. Two nodes n1 and n2 are connected with a directed

edge (n1, n2) if the (pre-)formulas in n2 can hold at a state following one

that satisfies the (pre-)formulas in n1.

Then the automaton can be constructed by using this graph and defining

the suitable accepting conditions.

4.3.1 Graph construction

The main idea behind the construction is that any (pre-)formula can be

decomposed to give a collection of sets containing (pre-)formulas that either

apply to the current time alone or are (pre-)formulas that holds at the next

time.

PNP

In the following, we use a structure called pnp (positive-negative-pair) for

representing (pre-)formulas.

40 Chapter 4

Definition 4.3 (pnp) A pnp is a pair p = (F+,F−) of two finite sets F+

and F− of (pre-)formulas. The formula p̂ will be the abbreviation of∧
A∈F+

A ∧
∧

B∈F−
¬B.

We denote by F(p) the set containing every (pre-)formula in F+ and the

negation form of every (pre-)formula in F−.

A pnp is called inconsistent if false ∈ F+ or there exists some (pre-)formula

A such that A ∈ F+ and A ∈ F−, i.e. F+ ∩ F− 6= ∅.

As convention a pnp (∅, ∅) represents the formula true. We also define

some operations over pnps.

Definition 4.4 Given two pnps p1 = (F+
1 ,F−1) and p2 = (F+

2 ,F−2), the

operation ∪,∩ and \ over p1 and p2 are defined as follows:

1. p1 ∪ p2 = (F+
1 ∪ F+

2 ,F−1 ∪ F−2).

2. p1 ∩ p2 = (F+
1 ∩ F+

2 ,F−1 ∩ F−2).

3. p1 \ p2 = (F+
1 \ F+

2 ,F−1 \ F−2).

Node

The data structure we use for representing nodes contains sufficient infor-

mation for the graph construction algorithm to be able to operate in a DFS

order.

Definition 4.5 (node) A node N is given by a tuple (Init ,Loc,Exp,Old ,

Next) where:

• Init is a boolean variable indicating whether N is an initial location or

not,

• Loc is a boolean variable indicating whether N is a location or not,

• Exp is a pnp representing a set of (pre-)formulas that must hold at the

current node and have not yet been processed,

• Old is a pnp representing a set of (pre-)formulas that must hold at the

current node and have been already processed and

Automata on infinite words 41

• Next is a pnp representing a set of (pre-)formulas that are promised to

hold in the successors of the current node.

For a node N we use the notation NInit ,NLoc,NExp ,NOld and NNext for

referring its components.

A node N is called a candidate location, or location for short, if both

pos(NExp) and neg(NExp) are empty and called a root if pos(NOld), neg(NOld),

pos(NNext) and neg(NNext) are empty.

neg(NExp)

neg(NOld)

neg(NNext)

pos(NExp)

pos(NOld)

pos(NNext)

NInit NLoc

Figure 4.2: Graphical representation of a node.

Expansion rule

Depending on its form, a (pre-)formula will be expanded during the expansion

step. Every row of the Table 4.1 represents an expansion rule, which is based

on the definition of semantics of pTLA* (pre-)formulas and can be read as

follows:

p̂↔
∨
i=1..k

̂Newi(p) ∧ ◦ ̂Nexti(p)

where k ∈ 1..3 depends on the form of the (pre-)formula. For example, if p

is a pnp of the form ({2A}, ∅) then the expansion rule is:

p̂ ↔ ̂New 1(p) ∧ ◦ ̂Next1(p)

↔ A ∧ ◦2A.

Expansion step

Given a pnp p, the formula graph for p̂ can be constructed by using algorithm

formula-graph in Figure 4.3. The input parameters of this procedure are

two nodes N s and N c, a set of nodes V and a set of edges E .

Initially, N s is a dummy node which is set to 〈false, false, (∅, ∅), (∅, ∅),
(∅, ∅)〉. During the execution N s will represent a source node of the edges

42 Chapter 4

p
N

ew
1 (

p
)

N
ext

1 (
p

)
N

ew
2 (

p
)

N
ext

2 (
p

)
N

ew
3 (

p
)

N
ext

3 (
p

)

({◦F
},∅)

−
({F
}
,∅)

−
−

−
−

({A
→

B
}
,∅)

(∅
,{A
})

(∅
,∅)

({B
},∅)

(∅
,∅)

−
−

({
2

A
},∅)

({A
}
,∅)

({
2

A
},∅)

−
−

−
−

({
2

[A
]v }
,∅)

({v}
,∅)

({v
,
2

[A
]v }
,∅)

(∅
,{v})

({
2

[A
]v }
,{v})

({A
},∅)

({
2

[A
]v }
,∅)

(∅
,{◦F

})
−

(∅
,{F
})

−
−

−
−

(∅
,{A
→

B
})

({A
}
,{B
})

(∅
,∅)

−
−

−
−

(∅
,{

2
A
})

(∅
,{A
})

(∅
,∅)

(∅
,∅)

(∅
,{

2
A
})

−
−

(∅
,{

2
[A

]v })
({v}

,{A
})

(∅
,{v})

(∅
,{v

,A
})

({v},∅)
(∅,∅)

(∅
,{

2
[A

]v })

T
ab

le
4.1:

E
x
p
an

sion
tab

le.

Automata on infinite words 43

produced by the algorithm. N c is initially set to the node whose Exp com-

ponent is p. This node becomes the initial node or the root of the formula

graph. The pair (V ,E) represents the formula graph.

Using a dummy node D , an initial node R, and V ,E , which are initially

empty, as parameters, the algorithm calls the procedure expand in Figure

4.4.

Every time the procedure expand is called, it checks the consistency

of the Exp component of N c (line 1). If N c
Exp is not inconsistent then it

continues to check whether V already contains a node N n whose Exp,Old

and Next components are the same to the ones of N c (lines 2-3). If it is

so then a new edge that connects the source node N s to N n is added to

E (line 4). Otherwise, the current node N c is stored to V (line 6) and if

N c
Init is equal to false then a new edge that connects the source node N s

to the current node N c is inserted into E (line 7). A new edge is not created

if N c
Init = true, since N s is the dummy node D as long as N c = true.

The procedure then checks whether the current node is a location or not

(line 8). If yes then the N c
Loc becomes true (line 9) and furthermore, since

there are no more unprocessed obligations left in N c
Exp, a new node N n is

created (line 10) and the procedure expand is called with N c,N n ,V and E

as parameters (line 11).

In case of N c is not a location, N c is expanded to produce one (lines

13-28), two (lines 29-36) or three (lines 37-46) successor node(s). In this step

the algorithm uses the information in Table 4.1. The first part of Table 4.1

(rows 1-4) is related to the (pre-)formulas that can be represented as positive

component of a pnp p, whereas the second part (rows 5-8) is related to the

ones that can be represented as negative components of a pnp p.

Figure 4.6.a illustrates the graph construction for formula 2p. Every

node is marked with a number representing the ordering of its generation.

The nodes, which are locations, are drawn with bold lines. Nodes with some

incoming edges drawn as arrows crossed by a double line are roots. The

underlined (pre-)formulas are (pre-)formulas on which expansion rules have

been applied.

4.3.2 Automaton definition

Now the graph constructed by the algorithm formula-graph can be used

to define a Muller automaton that accepts the infinite words that satisfy the

(pre-)formula p̂. The set of locations Q of the automaton contains all the

nodes N in V such that NLoc = true. The initial locations Q0 are those

locations N in Q such that NInit=true.

44 Chapter 4

Algorithm formula-graph

Input: a (pre-)formula R̂Exp; Output: a formula graph (V ,E).

1 D = 〈true, false, (∅, ∅), (∅, ∅), (∅, ∅)〉
2 R = 〈true, false, (R+

Exp, R
−
Exp), (∅, ∅), (∅, ∅)〉

3 V = ∅
4 E = ∅
5 expand(D ,R,V ,E)

Figure 4.3: Formula graph generation algorithm.

As the input alphabet for the automaton, ΣM, we take the set containing

sets of atomic propositions that occur in p̂, i.e. ΣM = 2At(p̂). We will

later regard every element x of ΣM as a state, i.e. Boolean valuation over

atomic propositions in At(p̂), s : At(p̂)→ {tt,ff}, such that for every atomic

proposition v in x , s(v) = tt and s(v) = ff, otherwise.

Definition 4.6 (positive-negative occurrences of atomic proposi-

tion) Let q be a location in Q. We denote by Pos(q) and Neg(q) the set

containing all atomic propositions in q+
Old and q−Old, i.e., Pos(q) and Neg(q) is

the positive and negative occurrences of the propositions in qOld, respectively.

The transitions of the automaton are defined in a way such that for two

locations N and N ′ in Q and x ∈ ΣM, (N , x ,N ′) is in ∆ iff there exists a

path in E from N to N ′ without traversing any other locations in Q and x

satisfies the atomic propositions contained in NOld , i.e. At(p̂) ⊇ x ⊇ Pos(N)

and x ∩ Neg(N) = ∅.
The important step in the automaton definition is the definition of ac-

cepting conditions. We observe that not every maximal path π = q0q1 . . . in

the constructed graph determines models of the (pre-)formula. For instance,

the construction allows some nodes to contain a (pre-)formula of the form

¬2A while none of the successor nodes contains ¬A.

Definition 4.7 (promising pnp) A pnp p is called a promising pnp if its

form appears in the left column of Table 4.2.

Automata on infinite words 45

Algorithm expand

Input : a node N s , N c , a set of nodes V and a set of edges E .

1 if N c
Exp is not inconsistent then

2 if there exists some node N n ∈ V such that N n
Exp = N c

Exp,N n
Old = N c

Old

3 and N n
Next = N c

Next then
4 E = E ∪ {(N s,N n)}
5 else
6 V = V ∪ {N c}
7 if NInit = false then E = E ∪ {(N s,N c)} endif
8 if N c is a location then
9 N c

Loc = true

10 N 1 = 〈false, false,N c
Next, ∅, ∅〉

11 expand(N c ,N 1,V ,E)
12 else
13 if N c

Exp contains a pnp p of the form ({v}, ∅) or (∅, {v}) for some v ∈ V
14 then
15 N 1 = 〈N c

Init, false,N c
Exp \ p,N c

Old ∪ p,N c
Next〉

16 expand(N c ,N 1,V ,E)
17 endif
18 ifN c

Exp contains a pnp p of the form ({◦G}, ∅) or (∅, {◦G}) for
19 some formula G then
20 N 1 = 〈N c

Init, false,N c
Exp \ p,N c

Old ∪ p,N c
Next ∪Next1(p)〉

21 expand(N c ,N 1,V ,E)
22 endif
23 if N c

Exp contains a pnp p of the form ({2A}, ∅) or (∅, {A→ B}) for
24 some (pre-)formulas A and B and some atomic proposition v ∈ V
25 then
26 N 1=〈N c

Init, false,N c
Exp\p∪New1(p) \N c

Old,N c
Old∪p,N c

Next∪Next1(p)〉
27 expand(N c ,N 1,V ,E)
28 endif
29 if N c

Exp contains a pnp p of the form ({A→B}, ∅) or (∅, {2A}) for
30 some (pre-)formulas A and B and some atomic proposition v ∈ V
31 then
32 N 1=〈N c

Init, false,N c
Exp\p∪New1(p)\N c

Old,N c
Old∪p,N c

Next∪Next1(p)〉
33 expand(N c ,N 1,V ,E)
34 N 2=〈N c

Init, false,N c
Exp\p∪New2(p)\N c

Old,N c
Old∪p,N c

Next∪Next2(p)〉
35 expand(N c ,N 2,V ,E)
36 endif
37 if N c

Exp contains a pnp p of the form ({2[A]v}, ∅) or (∅, {2[A]v})
38 for some (pre-)formula A and atomic proposition v ∈ V then

Figure 4.4: expand algorithm.

46 Chapter 4

Algorithm expand

39 N 1=〈N c
Init, false,N c

Exp\p∪New1(p)\N c
Old,N c

Old∪p,N c
Next∪Next1(p)〉

40 expand(N c ,N 1,V ,E)
41 N 2=〈N c

Init, false,N c
Exp\p∪New2(p)\N c

Old,N c
Old∪p,N c

Next∪Next2(p)〉
42 expand(N c ,N 2,V ,E)
43 N 3=〈N c

Init, false,N c
Exp\p∪New3(p)\N c

Old,N c
Old∪p,N c

Next∪Next3(p)〉
44 expand(N c ,N 3,V ,E)
45 endif
46 endif
47 endif
48 endif

Figure 4.5: expand algorithm (continued).

∅

∅

∅

∅

∅

∅

∅

∅

∅

true false true

∅

1 2 3

(a)

true

3

(b)

truefalse

∅

∅

{�p}

{�p}

{�p}

{p}

{�p,

p}

{�p}

p

Figure 4.6: (a) Formula graph and (b) Muller automaton for 2p.

Automata on infinite words 47

p Old1(p) Next1(p) Old2(p) Next2(p)

(∅, {2A}) (∅, ∅) (∅, {A}) − −
(∅, {2[A]v}) ({v}, {A}) (∅, {v}) (∅, {A, v}) ({v}, ∅)

Table 4.2: Promising and fulfilling pnps.

Definition 4.8 (fulfilling node and formula) Let p be a promising pnp.

Then a node N is called a fulfilling node of p if one of the following conditions

hold

• p is of the form (∅, {2A}) and F(Old1(p)) ⊆ F(NOld) and F(Next1(p))

⊆ F(NNext).

• p is of the form (∅, {2[A]v}) and either F(Old1(p)) ⊆ F(NOld) and

F(Next1(p)) ⊆ F(NNext) or F(Old2(p)) ⊆ F(NOld) and F(Next2(p)) ⊆
F(NNext).

For a promising pnp p, we also call the formula(s) ̂Old1(p)∧◦ ̂Next1(p) (and
̂Old2(p) ∧ ◦ ̂Next2(p)) the fulfilling formula(s) of p.

We now define the so-called accepting scss based on two definitions above.

Definition 4.9 (accepting scs) Let S be the set containing all the scss of

Q andR be the set containing all promising pnps contained in Old component

of every node in Q. We define F to be the set containing all scss in S such

that for every F ∈ F and for every p ∈ R, if there exists some location N
in F such that if p ∈ NOld then there exists some location N ′ which is a

fulfilling node of p.

Construction 4.10 (graph to Muller automaton) Let p be a pnp and V and

E be a set of nodes and edges returned by the Algorithm formula-graph.

The Muller automaton M over 2At(p̂) which accepts exactly the models of p

is given by (Q,Q0,∆,F) where

• Q ⊆ V such that for every q in V , q is in Q iff qLoc = true,

• Q0 ⊆ Q such that for every q in Q, q is in Q0 iff q Init = true,

48 Chapter 4

• ∆ ⊆ Q× 2At(p̂)×Q such that (q1, x, q2) ∈ ∆ if there exists a path from

qi . . . qj such that qi = q1, qj = q2 and for every k, i < k < j, qkLoc =

false and At(p̂) ⊇ x ⊇ Pos(q1) and x ∩ Neg(q1) = ∅.

• F ⊆ 2Q is as defined in Definition 4.9.

We say that the construction succeeds if F is not empty whenever R is

not empty. Otherwise, we say that the construction fails, which implies that

(pre-)formula p is unsatisfiable.

Figure 4.6.b illustrates the constructed automaton for formula 2p. To

relate the automaton with the formula graph in Figure 4.6.a, each location is

labeled with q and the ordering number in the formula graph. For labeling

the transitions, we consider the set of atomic propositions contained in the

Old component of the source location. In the case of the Old component

of the source location does not contain any atomic proposition, we label the

transition with true. For example, the loop is labeled with atomic proposi-

tion p since the Old component of the q3 contains p. The acceptance set of

this automaton is {{q3}}.

4.3.3 Proof of correctness

In this section, we will prove the correctness of the algorithms explained in

the previous section.

Theorem 4.11 Let M be the constructed automaton for (pre-)formula A.

Then a behavior σ = s0s1 . . . is a model of A iff there exists an accepting run

π = q0q1 . . . such that σ[i..]|≈ q̂iOld ∧ ◦̂qiNext holds for every i ∈ N.

The two directions are proven in Lemma 4.17 and Lemma 4.18. Note that

in the following proofs, we only consider the (pre-)formulas that can be rep-

resented as the positive components of pnps. The other (pre-)formulas can

be proven similarly.

Lemma 4.12 (node-splitting)

1. When a node N is split during the construction in lines 29-36 in ex-

pand algorithm into two nodes N 1 and N 2, the following condition

holds:

N̂Old ∧ N̂Exp ∧ ◦N̂Next ←→ ̂N 1
Old ∧̂N 1

Exp ∧ ◦̂N 1
Next ∨

̂N 2
Old ∧̂N 2

Exp ∧ ◦̂N 2
Next

Automata on infinite words 49

2. When a node N is split during the construction in lines 37-46 in ex-

pand algorithm into three nodes N 1,N 2 and N 3, the following holds:

N̂Old ∧ N̂Exp ∧ ◦N̂Next ←→ N̂ 1
Old ∧̂N 1

Exp ∧ ◦̂N 1
Next ∨

N̂ 2
Old ∧̂N 2

Exp ∧ ◦̂N 2
Next ∨

N̂ 3
Old ∧̂N 3

Exp ∧ ◦̂N 3
Next

3. When a node N is updated to become a new node N 1, as in lines 13-28

in expand algorithm the following holds:

N̂Old ∧ N̂Exp ∧ ◦N̂Next ←→ N̂ 1
Old ∧̂N 1

Exp ∧ ◦̂N 1
Next

Proof. Directly from expand algorithm and the definition of the semantics of
pTLA*. �

Let Rt denote the set of all the roots of the constructed formula graph

for A. Then for every root N in Rt one of the following conditions holds:

1. N is the initial node, R, on line 2 in Algorithm formula-graph in

Figure 4.3.

2. N is obtained at line 10 in Algorithm expand in Figure 4.4 from some

node N ′ whose construction is finish. Thus, we have NExp = N ′Next.

From the algorithm expand, every rootN is propagated to produce some

nodesN 1, . . . ,N k such thatN i
Exp = (∅, ∅). We call such nodes the same-time

descendant nodes of N . Moreover, since for every i ∈ 1..k , N i
Loc = true,

these nodes become the locations of the constructed automaton.

Lemma 4.13 Let N 0 be a root and N 1, . . . ,N k be its same-time descendant

nodes. Then
̂N 0
Exp ←→

∨
i∈1..k

̂N i
Old ∧ ◦̂N i

Next.

Proof. Suppose ̂N 0
Exp represents a formula consisting only one single formula F ,

i.e. F(N 0
Exp) = F .

Case 1: N 0
Exp is of the form ({F}, ∅).

F = v for v ∈ V.

By Lemma 4.12, N 0 will be propagated to produce one new node N 1 such
that N 1

Exp = (∅, ∅), N 1
Old = ({v}, ∅) and N 1

Next = (∅, ∅). N 1 is the only
same-time descendant node of N 0.

50 Chapter 4

F = ◦v for v ∈ V.

By Lemma 4.12, N 0 will be propagated to produce one new node N 1 such
that N 1

Exp = (∅, ∅), N 1
Old = ({◦v}, ∅) and N 1

Next = ({v}, ∅). N 1 is the only
same-time descendant node of N 0.

F = A→ B for A and B some (pre-)formulas.

By Lemma 4.12, N 0 will be propagated to produce two new nodes N 1 such
that N 1

Exp = (∅, ∅), N 1
Old = (∅, {A}) and N 1

Next = (∅, ∅); and N 2 such that
N 2
Exp = (∅, ∅), N 2

Old = ({B}, ∅) and N 2
Next = (∅, ∅). N 1 and N 2 are the

same-time descendant nodes of N 0.

F = 2A for some (pre-)formula A.

By Lemma 4.12, N 0 will be propagated to produce one new node N 1 such
that N 1

Exp = ({A}, ∅), N 1
Old = ({2A}, ∅) and N 1

Next = ({2A}, ∅). Applying
Lemma 4.12 once again, N 1 will be propagated to produce one new node
N 2 such that N 2

Exp = (∅, ∅), N 2
Old = ({2A,A}, ∅) and N 2

Next = ({2A}, ∅).
N 2 is the only same-time descendant node of N 0.

F = 2[A]v for some (pre-)formula A and some atomic proposition v ∈ V.

By Lemma 4.12, N 0 will be propagated to produce three new nodes N 1,N 2

and N 3 such that

• N 1
Exp = ({v}, ∅), N 1

Old = ({2[A]v}, ∅), N
1
Next = ({v,2[A]v}, ∅),

• N 2
Exp = (∅, {v}), N 2

Old = ({2[A]v}, ∅), N
2
Next = ({2[A]v}, {v}),

• N 3
Exp = ({A}, ∅), N 3

Old = ({2[A]v}, ∅) and N 3
Next = ({2[A]v}, ∅).

Furthermore, by Lemma 4.12, N 1 will be propagated to produce one new
node N 4 such that N 4

Exp = (∅, ∅), N 4
Old = ({2[A]v, v}, ∅) and N 4

Next =
({v,2[A]v}, ∅); N 2 will be propagated to produce one new node N 5 such
that N 5

Exp = (∅, ∅), N 5
Old = ({2[A]v}, {v}) and N 5

Next = ({2[A]v}, {v});
whereas N 3 will be propagated to produce one new node N 6 such that
N 6
Exp = (∅, ∅), N 6

Old = ({2[A]v, A}, ∅}) and N 6
Next = ({2[A]v}, ∅}). N 4,N 5

and N 6 are the same-time descendant nodes of N 0.

Case 2: N 0
Exp is of the form (∅, {F}).

F = v for v ∈ V.

By Lemma 4.12, N 0 will be propagated to produce one new node N 1 such
that N 1

Exp = (∅, ∅), N 1
Old = (∅, {v}) and N 1

Next = (∅, ∅). N 1 is the only
same-time descendant node of N 0.

Automata on infinite words 51

F = ◦v for v ∈ V.

By Lemma 4.12, N 0 will be propagated to produce one new node N 1 such
that N 1

Exp = (∅, ∅), N 1
Old = (∅, {◦v}) and N 1

Next = (∅, {v}). N 1 is the only
same-time descendant node of N 0.

F = A→ B for A and B some (pre-)formulas.

By Lemma 4.12, N 0 will be propagated to produce one new node N 1 such
that N 1

Exp = (∅, ∅), N 1
Old = (∅, {A → B}) and N 1

Next = ({A}, {B}). N 1 is
the only same-time descendant node of N 0.

F = 2A for some (pre-)formula A.

By Lemma 4.12, N 0 will be propagated to produce two new nodes N 1

and N 2 such that N 1
Exp = (∅, {A}), N 1

Old = (∅, {2A}), N 1
Next = (∅, ∅),

N 2
Exp = (∅, ∅), N 2

Old = (∅, {2A}) and N 2
Next = (∅, {2A}). By Lemma 4.12,

N 1 will be propagated to produce one new node N 3 such that N 3
Exp = (∅, ∅),

N 3
Old = (∅, {2A,A}) and N 3

Next = (∅, ∅). N 2 and N 3 are the same-time
descendant nodes of N 0.

F = 2[A]v for some (pre-)formula A and some atomic proposition v ∈V.

By Lemma 4.12, N 0 will be propagated to produce three new nodes N 1,N 2

and N 3 such that

• N 1
Exp = ({v}, {A}), N 1

Old = (∅, {2[A]v}), N
1
Next = (∅, {v}),

• N 2
Exp = (∅, {v,A}), N 2

Old = (∅, {2[A]v}), N
2
Next = ({v}, ∅)

• N 3
Exp = (∅, ∅), N 3

Old = (∅, {2[A]v}) and N 3
Next = (∅, {2[A]v}).

Applying Lemma 4.12 for the second time, N 1 will be propagated to produce
one new node N 4 such that N 4

Exp = (∅, {A}), N 4
Old = ({v}, {2[A]v}) and

N 4
Next = (∅, {v}). N 2 will be propagated to produce one new node N 5

such that N 5
Exp = (∅, {A}), N 5

Old = (∅, {2[A]v, v}) and N 5
Next = ({v}, ∅).

Furthermore, Applying Lemma 4.12 for the third time, N 4 and N 5 will
be propagated to produce N 6 and N 7 such that N 6

Exp = (∅, ∅), N 6
Old =

({v}, {2[A]v, A}), N
6
Next = (∅, {v}), N 7

Exp = (∅, ∅), N 7
Old = (∅, {2[A]v, v, A})

and N 7
Next = ({v}, ∅).

N 3,N 6 and N 7 are the same-time descendant nodes of N 0.

For all those cases we have ̂N 0
Exp ←→

∨
i∈1..k

̂N i
Old ∧ ◦

̂N i
Next where k is the

number of the same-time descendant nodes of N 0.
Assume we have a procedure getSTDN 1(N) that returns the set containing

all same-time descendant nodes of some node N where N̂Exp represents a formula
consisting of one single formula.

52 Chapter 4

Algorithm stdn

Input : a node N , Output: a set of nodes S0.

1 S 0 = ∅
1 for every F ∈ F(NExp) do
2 S = getSTDN 1(F)
3 S temp = S 0

4 S 0 = ∅
5 for every N 1 ∈ S temp do
6 for every N 2 ∈ S do
7 S0 = S0 ∪ 〈NInit,true,N 1

Exp ∪N 2
Exp,N 1

Old ∪N 2
Old,N 1

Next ∪N 2
Next〉

8 endfor
9 endfor

10 endfor
11 return S 0

Figure 4.7: Procedure stdn.

We consider the case where ̂N 0
Exp represents a complex formula consisting more

than one single formula, i.e. |F(N 0
Exp)| > 1. In order to compute the same-time

descendant nodes of N 0 we can use procedure stdn in Figure 4.7. It can be shown
that for this case we also have ̂N 0

Exp ←→
∨
i∈1..k

̂N i
Old∧◦

̂N i
Next where k is the number

of the same-time descendant nodes of N 0. �

Lemma 4.14 Let N 0 be a root whose Exp component contains some promis-

ing pnp p and σ = s0s1 . . . be a behavior such that σ|≈̂N 0
Exp. Let p1 be one

of the fulfilling pnps of p. Then if σ|≈ p̂1 then there exists some of the

same-time descendant nodes of N 0 whose Old component contains p1.

Proof. Let N 0 be a root and p be some promising pnp contained by N 0
Exp. We

consider two cases:

1. p = ({3A}, ∅) for some (pre-)formula A.

By Definition 4.8, the fulfilling formula of p is A, i.e. p1 = ({A}, ∅). Since
σ|≈ p̂ and σ|≈ p̂1 by assumption, there must be some same-time descendant
node of N 0, N , such that ({3A,A}, ∅) ⊆ NOld . In the proof of Lemma 4.13
we have shown that such node exists (N 3).

2. p = ({3〈A〉v}, ∅) for some (pre-)formula A and some atomic proposition
v ∈ V.

Automata on infinite words 53

By Definition 4.8, the fulfilling formula of p is A ∧ v ∧ ◦¬v or A ∧ ¬v ∧ ◦v ,
i.e the fulfilling node of p is a node N such that ({A, v}, ∅) ⊆ NOld and
({v}, ∅) ⊆ NNext or ({A}, {v}) ⊆ NOld and (∅, {v}) ⊆ NNext . In the proof
of Lemma 4.13 we have shown that such nodes exist (N 6 or N 7). �

Lemma 4.15 Let σ = s is i+1 . . . be a behavior and q be a location of M
such that σ|≈ q̂Old ∧ ◦q̂Next. Then there exists a transition (q , x , q ′) ∈ ∆ (for

some x ∈ ΣM) such that σ[i..]|≈ q̂′Old ∧ ◦q̂′Next. Moreover, if qOld contains

some promising pnp p but qOld is not a fulfilling pnp of p and σ[i + 1..]|≈ p1

for p1 is a fulfilling pnp of p, then in particular there exists a transition

(q , x , q ′) ∈ ∆ (for some x ∈ ΣM) such that q′Old contains p1. .

Proof. Let σ = s i s i+1 . . . be a behavior and q be a location of M such that
σ |≈ q̂Old ∧ ◦q̂Next. Since q is a location by assumption, then by the expand

algorithm a new root N is created (line 10) such that NExp = qNext . By Lemma
4.13, N will be expanded to produce some locations N 1, . . . ,N k such that

N̂Exp ←→
∨
i∈1..k

N̂ i
Old ∧ ◦

̂N i
Next.

Since NExp = qNext , this implies that

q̂Next ←→
∨
i∈1..k

N̂ i
Old ∧ ◦

̂N i
Next.

By assumption σ |≈ q̂Old ∧ ◦q̂Next. It follows that

σ[1..] |≈
∨
i∈1..k

N̂ i
Old ∧ ◦

̂N i
Next.

By expand algorithm, for every i ∈ 1..k , there exists a path from q to N i . Thus,
since every N i is a location, by Construction 4.10, these edges will become the
transitions of M.
Now assume that qOld contains a promising pnp p but q is not a fulfilling node
of p and σ[i + 1..] satisfies one of the fulfilling formulas of p. Then Lemma 4.14
guarantees that there exists some of the same-time descendant nodes of N , N i ,
such that N i is a fulfilling node of p. �

Lemma 4.16 Let p be a pnp and M be the constructed automaton for p̂.

Then

p̂←→
∨
q∈Q0

q̂Old ∧ ◦q̂Next.

Proof. By Lemma 4.13 with N 0 is the initial node R. Since RExp = p. �

54 Chapter 4

Lemma 4.17 Let p be a pnp, M be the constructed automaton for p̂ and

π = q0q1 . . . be an accepting run of M. Then a behavior σ = s0s1 . . . such

that σ[i..]|≈ q̂iOld ∧ ◦̂qiNext holds for every i ∈ N is a model of p̂.

Proof. Let p be a pnp,M be the constructed automaton for p̂, π = q0q1 . . . be an
accepting run ofM and σ = s0s1 . . . be a behavior such that σ[i..]|≈ q̂iOld ∧ ◦

̂qiNext
holds for every i ∈ N.

Thus, N 0 = 〈true, false,p, (∅, ∅), (∅, ∅)〉. By expand algorithm N 0 will be
expanded to produce some same-time descendant nodes, N 1, . . . ,N k . Since N 0 is
the initial node, N 1, . . . ,N k will become the initial locations of M. We consider
the following cases:

• If false or ¬false is contained by F(p). Trivial.

• If F(p) contains a single formula F of the form v or ¬v for v ∈ V. Based
on the proof of Lemma 4.13 it can be shown that for every initial location
q ∈ Q0, F ∈ F(qOld).

• If F(p) contains a formula F of the form A→ B for A and B (pre-)formulas.
Based on the proof of Lemma 4.13 it can be shown that for every initial
location q ∈ Q0, ¬A ∈ F(qOld) or B ∈ F(qOld).

• If F(p) contains a single formula F of the form ¬(A → B) for A and B
(pre-)-formulas. Based on the proof of Lemma 4.13 it can be shown that for
every initial location q ∈ Q0, {¬A,B} ⊆ F(qOld.

• If F(p) contains a single formula F of the form ◦v or ¬◦ v for v ∈ V. Based
on the proof of Lemma 4.13 it can be shown that for every initial location
q ∈ Q0, F ∈ F(qNext).

• If F(p) contains a single formula F of the form 2A for A some (pre-)formula.

We will show that A ∈ F(qiOld) holds for every i ∈ N. It is shown in the
proof of Lemma 4.13 that A ∈ F(q0

Old) and 2A ∈ F(q0
Next).

By expand algorithm a new root N n is created such that 2A ∈ F(N n
Exp).

Repeatedly applying the similar argument for q1, q2, . . ., we conclude that
A ∈ F(qiOld) and A ∈ F(qiNext) holds for every i ∈ N.

• If F(p) contains a single formula F of the form ¬2A for A some (pre-)-
formula.

In this case we have to prove that there exists some j ∈ N such that ¬2A ∈
F(qiOld) holds for every i ≤ j , ¬A /∈ F(qiOld) holds for every i < j and
¬A ∈ F(qjOld).

Referring to the proof of Lemma 4.13, either

Automata on infinite words 55

1. {¬2A,¬A} ⊆ F(q0
Old) or

2. ¬2A ∈ F(q0
Old) and ¬2A ∈ F(q0

Next).

If the first case holds then the required condition is trivially satisfied. If
the second case holds then by expand algorithm, a new root N n is created
such that ¬2A ∈ F(N n

Exp). Repeatedly applying the similar argument for
q1, q2, . . ., we conclude that for every i ∈ N, either {¬2A,¬A} ⊆ F(qiOld)
or 2A ∈ F(qiOld) and ¬2A ∈ F(qiNext). Since by assumption π is accepting,
it is ensured that such j exists.

• If F(p) contains a formula F of the form 2[A]v for A some (pre-)formula
and v ∈ V.

In this case it suffices to show that for every i ∈ N, one of the following
conditions hold:

– v ∈ F(qiOld) and v ∈ F(qi+1
Old),

– ¬v ∈ F(qiOld) and ¬v ∈ F(qi+1
Old) or

– A ∈ F(qiOld).

Referring to the proof of Lemma 4.13, there are three possibilities for q0,
namely:

1. {2[A]v, v} ⊆ F(q0
Old) and {v,2[A]v} ⊆ F(q0

Next),

2. {2[A]v,¬v} ⊆ F(q0
Old) and {2[A]v,¬v} ⊆ F(q0

Next) or

3. {2[A]v, A} ⊆ F(q0
Old) and {2[A]v} ∈ F(q0

Next).

If condition 1 holds then by expand algorithm a new rootN n is created such
that {v,¬2[A]v} ⊆ F(N n). By expand algorithm and Construction 4.10
either {2[A]v, v} ⊆ F(q1

Old) and ({2[A]v, v} ⊆ F(q1
Next) or {2[A]v, v, A} ⊆

F(q1
Old) and 2[A]v ∈ F(q1

Next) holds. If the first case holds then by expand

algorithm a new root N 1 is created such that {v,¬2[A]v} ⊆ F(N 1
Exp),

otherwise 2[A]v ∈ F(N 1
Exp).

If condition 2 holds then by expand algorithm and Construction 4.10 either
{2[A]v,¬v} ⊆ F(q1

Old) and {2[A]v,¬v} ⊆ F(q1
Next) or {2[A]v, A,¬v} ⊆

F(q1
Old) and 2[A]v ∈ F(q1

Next). If the first case holds then by expand

algorithm a new root N 1 is created such that {2[A]v,¬v} ⊆ N
1
Exp, otherwise

2[A]v ∈ N
1
Exp.

If condition 3 holds then by expand algorithm a new root N 1 is created
such that 2[A]v ∈ F(N 1

Exp).

Repeatedly applying the similar argument for q1, q2, . . ., we conclude that
the required condition is satisfied.

56 Chapter 4

• If F(p) contains a formula F of the form ¬2[A]v for A some (pre-)formula
and v ∈ V.

In this case we have to prove that there exists some j ∈ N such that

– ¬2[A]v ∈ F(qiOld) holds for every i ≤ j ,

– neither {¬A,¬v} ⊆ F(qiOld) and v ∈ F(qi+1
Old) nor {¬A, v} ⊆ F(qiOld)

and ¬v ∈ F(qi+1
Old) holds for every i < j and

– ¬A ∈ F(qjOld).

Referring to the proof of Lemma 4.13, there are three possibilities for q0,
namely:

1. {¬2[A]v,¬A,¬v} ⊆ F(q0
Old) and v ∈ F(q0

Next),

2. {¬2[A]v,¬A, v} ⊆ F(q0
Old) and ¬v ∈ F(q0

Next) or

3. ¬2[A]v ∈ F(q0
Old) and ¬2[A]v ∈ F(q0

Old) ∈ F(q0
Next).

If the first condition holds then by expand algorithm a new root N n is
created such that v ∈ F(N n

Exp). By expand algorithm and Construction
4.10 v ∈ F(q1

Old). Thus the required condition is satisfied.

If the second condition holds then by expand algorithm a new root N n is
created such that ¬ ∈ F(N n

Exp) . By expand algorithm and Construction
4.10 ¬v ∈ F(q1

Old). Thus the required condition is satisfied.

If the third condition holds then by expand algorithm a new root N n is
created such that ¬2[A]v ∈ F(N n

Exp). Repeatedly applying the same argu-
ment for q1, q2, . . . we conclude that for every i ∈ N the condition 1, 2 or 3
holds. Since by assumption π is accepting, it is ensured that such j exists.

�

Lemma 4.18 Let p be a pnp and M be the constructed automaton for p̂

and σ = s0s1 . . . be a model of p̂. Then there exists an accepting run of M
such that σ[i..]|≈ q̂iOld ∧ ◦̂qiNext holds for every i ∈ N.

Proof. Let σ = s0s1 . . . be a model of p̂ and P be a set of promising pnps
contained by p. We inductively define a sequence of locations π = q0q1 . . . such
that all the following conditions hold:

1. q0 ∈ Q0.

2. (q i , x , q i+1) ∈ ∆ holds for every i ∈ N and for some element x ∈ ΣM.

Automata on infinite words 57

3. σ[i..]|≈ q̂iOld ∧ ◦
̂qiNext holds for every i ∈ N.

4. for every promising pnp p0 in P there exists some i ∈ N such that there
exists some pnp p1 contained by qiOld such that p1 is a fulfilling pnp of p0.

As induction base we choose some q ∈ Q0 as q0 such that p̂ ←→ q̂Old ∧ ◦q̂Next
holds. The existence of such location is ensured by Lemma 4.16. By assumption
σ|≈ p̂ which implies that σ[0..]|≈ p̂. It follows that σ[0..]|≈ q̂0

Old ∧ ◦̂q0
Next.

Moreover, for every promising pnp p0 in P , if q0 contains some pnp p1 such that
p1 is one of the fulfilling pnps of p0, we remove p1 from P .
Now assume that we have already defined a sequence of locations q0q1 . . . qk such
that condition 1 holds, condition 2 holds for every i ∈ 0..k − 1 and condition 3
holds for every i ∈ 0..k and there exists. We consider the following cases:

• If condition 4 holds or P 6= ∅. Then by Lemma 4.5, there exists a transition
(qk , x , q) ∈ ∆ such that σ[k+ 1..]|≈ q̂Old ∧ ◦q̂Next for some element x ∈ ΣM.
Choose such a location q as qk+1.

• If condition 4 doesn’t hold and there exists some transition (q j−1, x , q) ∈ ∆
such that for some promising pnp p0 in P there exists some pnp p1 contained
by qOld such that p1 is a fulfilling pnp of p0. Choose such a location q as
qk+1. Remove p0 from P .

Notice that since σ|≈ p̂ holds by assumption, the existence of such location stated
in the second case of induction step is ensured by Lemma 4.15. Thus we can
construct π which is accepting as required. �

For the illustration of the formula graphs and the automaton for formulas

v , ◦v , p → q ,2p,¬2p,2[p]v and ¬2[p]v see Figure A.1-A.7 in Appendix A.

We also observe that every scs of the constructed automaton is reachable

as stated in the following lemma. This lemma will be used later in proving

the completeness of predicate diagrams in next chapter.

Lemma 4.19 Every scs S in M is reachable.

Proof. Every node is reachable, by Construction 4.10 every location is reachable.
�

4.4 Timed automata

In the following is a brief introduction of timed automata taken from [7, 8, 9]

and [32].

58 Chapter 4

A timed automaton is a finite automaton augmented with a finite set of

real-valued clocks. We assume that transitions are instantaneous. However,

time can elapse when the automaton is in a location. When a transition

occurs, some of the clocks may be reset to zero. At any instant, the reading

of a clock is equal to the time that has elapsed since the last time the clock

was reset. We assume that time passes at the same rate for all clocks.

A clock constraint, called a guard, is associated with each transition. The

transition can be taken only if the current values of the clocks satisfy the

clock constraint. A clock constraint is also associated with each location of

the automaton. This constraint is called the invariant of the location. Time

can elapse in the location only as long as the invariant of the location is

true. An example of a timed automaton is shown in Figure 4.8 [32]. The

automaton consists of two locations q0 and q1, two clocks x and y , an ”a”

transition from q0 to q1 and a ”b” transition from q1 to q0. The automaton

starts in location q0. It can remain in that location as long as the clock y is

less than or equal to 5. As soon as the value y is greater than or equal to 3,

the automaton can make an ”a” transition to location q1 and reset the clock

y to 0. The automaton can remain in location q1 as long as y is less than or

equal to 10 and x is less than or equal to 8. When y is at least 4 and x is at

least 6, it can make a ”b” transition back to location q0 and reset x .

a

b

x := 0

y ≥ 4 ∧ x ≥ 6

y ≤ 5
y ≤ 10

x ≤ 8

y ≥ 3 y := 0q0
q1

Figure 4.8: A simple timed automaton.

We now define timed automata formally.

Definition 4.20 (time sequence and timed word) A time sequence

ϕ = ϕ0ϕ1 . . . is an infinite sequence of time values ϕi ∈ R+, satisfying the

following constraints:

1. ϕ0 = 0.

Automata on infinite words 59

2. Monotonicity: τ increases strictly monotonically; that is, ϕi < ϕi+1 for

all i ∈ N.

3. Progress: For every t ∈ R+ there is some i ∈ N such that ϕi > t .

A timed word (w , ϕ) is a pair where w ∈ Σω is an infinite word over Σ

and ϕ is a time sequence.

We need to say what type of clock constraints are allowed on the edges.

Definition 4.21 (clock constraint) Let X be a set of clock variables,

ranging over the nonnegative real number R+. The set of clock constraints

Θ(X) is defined as follows:

• All inequalities of the form x ≺ c or c ≺ x are in Θ(X), where ≺ is

either < or ≤ and c is nonnegative rational number.

• If θ1 and θ2 are in Θ(X) then θ1 ∧ θ2 is in Θ(X).

Note that if X contains k clocks, then each clock constraint is a convex

subset of k -dimensional Euclidean space. Thus, if two points satisfy a clock

constraint, then all of the points on the line segment connecting these points

satisfy the clock constraint.

A clock interpretation ν for a set X of clocks assigns a real value to each

clock; that is, it is a mapping from X to R+. For t ∈ R+, ν + t denotes

the clock interpretation which maps every clock x to the value ν(x) + t . For

Y ⊆ X , ν[Y : = 0] denotes the clock interpretation for X which assigns 0 to

each x ∈ Y , and agrees with ν over the rest of the clocks.

Definition 4.22 (timed automata) A timed automaton Γ over an alpha-

bet Σ is a tuple (Q ,Q0,X , I,Λ), where

• Q is a set of locations,

• Q0 ⊆ Q is a set of initial locations,

• X is a finite set of clocks,

• I : Q → Θ(X) is a mapping from locations to clock constrains, called

the location invariant, and

60 Chapter 4

• Λ ⊆ Q × Σ × Θ(X) × 2X × Q is a set of transitions. The 5-tuple

(q , a, θ, λ, q ′) corresponds to a transition from location q to location

q ′ labelled with a, a constraint θ that specifies when the transition is

enabled and a set of clocks λ ⊆ X that are reset when the transition is

executed.

Given a timed word (w , ϕ), the timed automaton Γ starts in one of its

start locations at time 0 with all its clocks initialized to 0. As time advances,

the values of all clocks change, reflecting the elapsed time. At time ϕi , Γ

changes location from q to q ′ using some transition of the form 〈q , a, θ, λ, q ′ 〉
reading the input a, if the current values of the clocks satisfies θ. With

this transition the clocks in λ are reset to 0, and thus start counting time

with respect to the time of occurrence of this transition. This behavior is

captured by defining runs of timed automata. A run records the location

and the values of all the clocks at the transition points.

Definition 4.23 (run of a timed automaton) Let Γ = (Q ,Q0,X , I,Λ)

be a timed automaton over Σ. A run of Γ, φ, is an infinite sequence of the

form:

φ : (q0, ν0)
w1,ϕ1−→ (q1, ν1)

w2,ϕ2−→ . . .

where q i ∈ Q, νi ∈ [X → R
+], w i ∈ Σ and ϕi ∈ R+ such that the following

conditions hold:

• q0 ∈ Q0 and ν0(x) = 0 for all x ∈ X .

• For all i ∈ N, there is an edge in Λ, (q i ,w i , λi , θi , q i+1), such that

(νi+1 +ϕi+1−ϕi) satisfies θi+1, νi+1 is equal to [λi → 0](νi +ϕi+1−ϕi)

and for every 0 ≤ e ≤ ϕi+1 − ϕi , the invariant I(q i) holds.

The set inf (φ) consists of those locations q ∈ Q such that q = q i for infinitely

many i ≥ 0.

4.5 Discussion and related work

There are some other ω-automata over infinite words whose structures are

the same as Muller automata but differ in the definition of accepting condi-

tions. Büchi automata [24] is the simplest class of ω-automata over infinite

Automata on infinite words 61

words.The accepting condition of these automata is a set of locations and

a run is accepting iff inf(π) ∩ F 6= ∅, that is, when some accepting state

appears in π infinitely often. Generalized Büchi automata differ from the

standard Büchi by allowing multiple accepting sets rather than only one. An

accepting run needs to pass through each of one of the sets in F infinitely

often. Another automata is Street automata whose accepting condition is a

set of pairs (E ,F) where E and F are sets of locations. A run π is accepting

if
n∧
i=1

(Inf(π) ∩ Ei 6= ∅ ∨ Inf(π) ∩ Fi = ∅).

This accepting condition represents a ”fairness condition” which can be read

as ”for each i , if some location of F i is visited infinitely often, then some

location of E i is visited infinitely often”.

There are many algorithm that can be used for translating (propositional)

linear temporal logic formulas into automata, as proposed by Danielle et

al.[39], Somenzi&Bloem [101], Gastin&Oddoux [49], Wolper [106] and

many others. Most of them use (generalized) Büchi automata as the target

automata.

The algorithm for constructing Muller automaton is inspired by the one

for construction generalized Büchi automata from LTL formulas [51, 32, 93].

This algorithm can be used for model-checking of a temporal formula. This

algorithm is called ”on-the-fly” construction, meaning that the construction

of the automaton is done in the same time with the property checking. Thus,

whenever a violation of the checked property is discovered, the construction

can be stopped before generating the entire automaton.

Since pTLA* is a sub-logic of PTL (Propositional Temporal Logic), in

fact, there is no real need to define a special automaton construction for

pTLA* in order to check satisfiability. The reason for defining automata

construction here is to support the clarification of the completeness proof of

predicate diagrams in the next chapter.

The concept of timed automata will be used in Chapter 6 where we talk

about the verification of real-time systems.

62 Chapter 4

Chapter 5

Discrete systems

5.1 Overview

This chapter deals with the first class of reactive systems concerned in this

thesis, namely discrete systems.

We begin with the specification of discrete systems. The specification

we use here is a restricted form of the general TLA specification described

in Chapter 3 by requiring the next-state relation formula be written as a

disjunction of some action formulas. Another restriction is that the liveness

property is expressed by fairness property over sub-actions of the next-state

relation formula.

In the next section we describe a class of diagrams that will be used to

verify this class of reactive systems. Predicate diagrams, first introduced by

Cansell, Méry and Merz in [26], is a class of diagrams intended as the

basis for the verification of both safety and liveness properties of reactive

systems. We also describe how the verification of temporal properties of

discrete systems to be done using predicate diagrams.

As illustration we take the Bakery Algorithm from Lamport and prove

some properties of this algorithm using predicate diagrams.

The main contribution of this chapter is the completeness proof of predi-

cate diagrams, which is given in Section 5.6. We show that predicate diagram

is complete, i.e. for any specification and any formula of the temporal propo-

sitional logic, if the specification implies the formula, then the implication

can be proven by a suitable predicate diagram.

In the end of this chapter, we discuss our approach and compare to some

other work.

63

64 Chapter 5

5.2 Specification

In this work we represent the specification of discrete systems as formula of

the form:

Spec ≡ Init ∧2[Next]v ∧ Lf (5.1)

where

• Init and v as defined in Formula 3.1,

• Next is a disjunction of actions representing the next-state relation of

the system and

• Lf is a conjunction of formula WFv(A) and SFv(A) where A is any

action such that Spec → 2[A→ Next]v holds.

Formula 5.1 is a restricted form of Formula 3.1. The liveness property Lf

is expressed as a conjunction of formulas of the form WFv(A) and/or SFv(A)

where A is an action that implies Next in all states that are reachable for

Spec. We will call such action A sub-action of Next . This form ensures the

machine-closedness of the specification as stated in the following theorem [1].

Theorem 5.1 If Π is a safety property and L is the conjunction of a finite

or countably infinite number of formulas of the form WFv(A) and/or SFv(A)

such that each 〈A〉v is a sub-action of Π, then (Π,L) is machine closed.

5.3 Predicate diagrams

Now we present a class of diagrams that will be used for the verification of

discrete systems.

The underlying assertion language, by assumption, contains a finite set O
of binary relation symbols ≺ that are interpreted by well-founded orderings.

For ≺ ∈ O, its reflexive closure is denoted by �. We write O= to denote the

set of relation symbols ≺ and � for ≺ in O.

A predicate diagram is a finite graph whose nodes are labeled with sets of

(possibly negated) predicates, and whose edges are labeled with actions (more

precisely, action names) as well as optional annotations that assert certain

expressions to decrease with respect to an ordering in O=. Intuitively, a node

of a predicate diagram represents the set of system states that satisfy the

formulas contained in the node. (We indifferently write n for the set and the

conjunction of its elements.) An edge (n,m) is labeled with action A if A can

Discrete systems 65

cause a transition from a state represented by n to a state represented by m.

An action A may have an associated fairness condition; fairness conditions

apply to all transitions labeled by the action rather than to individual edges.

Formally, the definition of predicate diagram is relative to finite sets P
andA that contain the state predicates and the (names of) actions of interest;

we will later use τ 6∈ A to denote a special stuttering action. We write P to

denote the set of literals formed by the predicates in P , that is, the union of

P and the negations of the predicates in P .

Definition 5.2 (predicate diagram) Assume given two finite sets P and A
of state predicates and action names. A predicate diagram G = (N , I , δ, o,

ζ) over P and A consists of

• a finite set N ⊆ 2P of nodes,

• a finite set I ⊆ N of initial nodes,

• a family δ = (δA)A∈A of relations δA ⊆ N × N ; we also denote by δ

the union of the relations δA, for A ∈ A and write δ= to denote the

reflexive closure of the union of these relations,

• an edge labeling o that associates a finite set {(t1,≺1), . . . , (tk,≺k)}, of

terms t i paired with a relation ≺i∈ O= with every edge (n,m) ∈ δ, and

• a mapping ζ : A → {NF,WF, SF} that associates a fairness condition

with every action in A; the possible values represent no fairness, weak

fairness, and strong fairness.

We say that the action A ∈ A can be taken at node n ∈ N iff (n,m) ∈ δA

holds for some m ∈ N , and denote by En(A) ⊆ N the set of nodes where

A can be taken. We say that the action A ∈ A can be taken along an edge

(n,m) iff (n,m) ∈ δA.

We now define runs and traces through a diagram as the set of those

behaviors that correspond to fair runs satisfying the node and edge labels.

To evaluate the fairness conditions we identify the enabling condition of an

action A ∈ A with the existence of A-labeled edges at a given node. For a

term x and two states s and t , we denote by s [[x]] and s [[x]]t for s|≈ x and

s , t |≈ x , respectively.

66 Chapter 5

Definition 5.3 (run, trace) Let G = (N , I , δ, o, ζ) be a predicate diagram

over sets P and A. A run of G is an ω-sequence ρ = (s0, n0,A0) (s1, n1,A1) . . .

of triples where s i is a state, n i ∈ N is a node and Ai ∈ A∪{τ} is an action

such that all of the following conditions hold:

1. n0 ∈ I is an initial node.

2. s i [[n i]] holds for all i ∈ N.

3. For all i ∈ N, either Ai = τ and n i = n i+1 or Ai ∈ A and (n i , n i+1) ∈
δAi .

4. If Ai ∈ A and (t ,≺) ∈ o(n i , n i+1), then s i+1[[t]] ≺ s i [[t]].

5. If Ai = τ then s i+1[[t]] � s i [[t]] holds whenever (t ,≺) ∈ o(n i ,m) for

some m ∈ N .

6. For every action A ∈ A such that ζ(A) = WF there are infinitely many

i ∈ N such that either Ai = A or n i /∈ En(A).

7. For every action A ∈ A such that ζ(A) = SF, either Ai = A holds

for infinitely many i ∈ N or n i ∈ En(A) holds for only finitely many

i ∈ N.

We write runs(G) to denote the set of runs of G.

The set tr(G) of traces through G consists of all behaviors σ = s0s1 . . .

such that there exists a run ρ = (s0, n0,A0) (s1, n1,A1) . . . of G based on the

states in σ.

Informally, σ = s0s1 . . . is a trace through the predicate diagram G if

we can find a sequence of nodes n i whose associated formulas are true at s i

and that are related by transitions whose edge labels, including the ordering

annotations, are satisfied by consecutive states. In addition to the transitions

that are explicitly represented by edges of the diagram, we allow stuttering

transitions that remain in the source node. This definition ensures that the

set of traces through a diagram is closed under stuttering equivalence, just as

the models of TLA* formulas. Note that we do not require that two states s i

and s i+1 related by stuttering step (i.e. Ai = τ) be identical, they are only

required to satisfy the same node label. However, if node n i has an outgoing

edge with an ordering annotation (t ,≺) stuttering transitions are forbidden

to increase the value of t , as otherwise stuttering could interfere with liveness

properties induced by well-founded orderings.

Discrete systems 67

Fairness conditions are used to prevent infinite stuttering. Their inter-

pretation is standard, based on the intuition that the enabledness of actions

with non-trivial fairness requirements is reflected in the diagram.

5.4 Verification

In this section we describe the verification of discrete systems using predicate

diagrams.

In linear-time formalisms such as TLA and TLA*, trace inclusion is the

appropriate implementation relation. Thus, a specification Spec implements

a property or high level specification F if and only if the implication Spec →
F is valid [69]. Predicate diagrams can be used to refine this implication

into two conditions: first, all behaviors allowed by Spec must also be traces

through the diagram and second, every trace through the diagram must

satisfy F . Although both conditions are stated in terms of trace inclusion,

following Cansell et al., two different techniques are used here. To show

that a predicate diagram is a correct representation of a specification, we

consider the node and edge labels of the diagram as predicates on the concrete

state space of Spec, and reduce trace inclusion to a set of proof obligations

that concern individual states and transitions. On the other hand, to show

that the diagram implies the high level property, we regard all labels as

Boolean variables. The predicate diagram can therefore be encoded as a

finite labeled transition system, whose temporal properties are established

by model checking. In this respect, predicate diagrams act as an interface

between interactive and automatic proof methods. We now consider both

aspects in more detail.

5.4.1 Conformance

When comparing a specification and a predicate diagram, we must first assign

meaning to the action names that appear in the diagram. We assume given a

function α that assigns an action formula to every action name. Because no

confusion is possible, we will leave this assignment implicit, and again write

A instead of α(A) when referring to the formula assigned to the name A.

A predicate diagram G is said to conform to a specification Spec, writ-

ten Spec E G , if every behavior that satisfies Spec is a trace through G . In

general, proving conformance requires reasoning about entire behaviors. The

following theorem essentially introduces a set of first-order (”local”) verifica-

tion conditions that are sufficient to establish conformance of a diagram to

68 Chapter 5

a discrete system specification in standard form (Formula 5.1).

Theorem 5.4 (conformance) Let G = (N , I , δ, o, ζ) be a predicate diagram

over P and A, and Spec ≡ Init ∧2[Next]v ∧ Lf be a discrete system specifi-

cation. G conforms to Spec if all of the following conditions hold:

1. |= Init →
∨
n∈I

n.

2. |≈ n∧[Next]v → n ′∨
∨

(A,m):(n,m)∈δA

〈A〉v∧m ′ holds for every node n ∈ N .

3. For all n,m ∈ N and all (t ,≺) ∈ o(n,m):

(a) |≈ n ∧m ′ ∧
∨

A:(n,m)∈δA

〈A〉v → t ′ ≺ t and

(b) |≈ m ∧ [Next]v ∧ n ′ → t ′ � t .

4. For every action A ∈ A such that ζ(A) 6= NF:

(a) If ζ(A) = WF then |= Spec →WFv(A).

(b) If ζ(A) = SF then |= Spec → SFv(A).

(c) |= n → enabled 〈A〉v holds whenever n ∈ En(A).

(d) |≈ n ∧ 〈A〉v → ¬m ′ holds for all n,m ∈ N such that (n,m) /∈ δA.

Condition 1 asserts that every initial state of the system must be covered

by some initial node. This ensures that every run of the system can start at

some initial node of the diagram. Condition 2 asserts that from every node,

every transition, if it is enabled then it must have a place to go, i.e., there

is a successor node which represents the successor state of the transition. It

proves that every run of the system can stay in the diagram. Condition 3

is related to the ordering annotations whereas Condition 4 is related to the

fairness conditions. For the proof of this theorem the readers may refer to

[26, 83].

5.4.2 Model checking predicate diagrams

For the proof that all traces through a predicate diagram satisfy some prop-

erty F we view the predicate diagram as a finite transition system that is

amenable to model checking. All predicates and actions that appear as labels

of nodes or edges are then viewed as atomic propositions.

Discrete systems 69

Regarding predicate diagrams as finite labeled transition systems, their

runs can be encoded in the input language of standard model checkers such as

SPIN [57]. Two variables indicate the current node and the last action taken.

The predicates in P are represented by boolean variables, which are updated

according to the label of the current node, nondeterministically, if that label

contains neither P nor ¬P . We also add variables b(t ,≺), for every term t and

relation ≺∈ O such that (t ,≺) appears in some ordering annotation o(n,m).

These variables are set to 2 if the last transition taken is labeled by (t ,≺),

to 1 if it is labeled by (t ,�) or is stuttering transition and to 0 otherwise.

The fairness conditions associated with the actions of a diagram are easily

expressed as LTL assumptions for SPIN. As in Definition 5.3 we assume that

action A is enabled whenever the currently active node has an outgoing edge

in δA. To capture the effect of the ordering annotations, we add Streett-type

formulas1 23(b(t ,≺) = 2) → 23(b(b,≺) = 0) as additional assumptions for

every variable b(t ,≺) introduced. These assumptions ensure that transitions

known to strictly decrease t with respect to ≺ can not be taken infinitely

often unless infinitely often some transitions are taken that may increase the

value of t .

In order to establish the properties F whose atomic formulas are con-

tained in the set P of predicates of interest, one can now model check the

transition system resulted from the encoding. If the verification succeeds

then every trace through the diagram satisfies F , and by transitivity of trace

inclusion it follows that F holds on any specification that conforms to the

diagram. The counter-examples produced by the model-checker, on the other

hand, need not to correspond to actual system runs, because detail has been

lost in the abstraction. Such counter-examples, nevertheless, are helpful in

order to refine the abstraction, for example by adding ordering annotations.

Obviously, the size of diagrams that can be effectively analyzed in this way is

mostly limited by the number of fairness conditions and ordering annotations

present in the diagram.

5.5 An example: Bakery algorithm

In this section we will illustrate the use of predicate diagrams by proving

some properties of Lamport’s Bakery algorithm for mutual exclusion [67].

The Lamport’s Bakery algorithm is one of the famous solutions to the

mutual exclusion problem for the general case of N process. The algorithm is

based on the idea of a ticket machine, where people entering a (big) bakery

1See Section 4.5.

70 Chapter 5

draw a ticket with a number on it that indicates their turn to buy their

Sunday morning croissants.

We now consider a version of the algorithm for two processes [83] based

on atomic actions2. The Pseudocode of the protocol is given in Figure 5.1,

where angle brackets denote instantaneous atomic actions. Variables t1 and

t2 indicate the ticket number of each process. Each process can be in five

control locations, l0, . . . , l4 for process P1 and m0, . . . ,m4 for process P2.

We will call the control locations l0 and m0 non-critical sections, l1 and m1

requesting sections, l2 and m2 trying sections, l3 and m3 critical-sections and

l4 and m4 exiting sections.

First, every process is in its non-critical section and then it moves to its

requesting section. Process P i draws a ticket by setting its own number t i to

the number of the other process incremented by one, while moving from the

requesting to the trying section. Process P i then stays at its trying section

until it is allowed to enter its critical section. Finally, process P i leaves the

critical section by resetting its corresponding ticket number t i to zero and

moves to its exiting section.

We wish to establish the mutual-exclusion property as well as the live-

ness properties of the algorithm, that is, we want to prove that it is never

the case that both processes are in their critical sectiona at the same time

(mutually exclusive access of the clients to croissants) and that every pro-

cess will eventually be in its critical section (eventual access, once having a

ticket).

integer t1, t2 = 0;

cobegin
loop

l0 : noncritical;

l1 : 〈t1 : = t2 + 1〉;
l2 : await 〈t2 = 0 ∨ t1 ≤ t2 〉;
l3 : critical section;

l4 : 〈t1 : = 0〉
endloop

||

loop

m0 : noncritical

m1 : 〈t2 : = t1 + 1〉;
m2 : await 〈t1 = 0 ∨ ¬(t1 ≤ t2)〉;
m3 : critical section;

m4 : 〈t2 : = 0〉
endloop

coend

Figure 5.1: Bakery algorithm for two processes: Pseudocode representation.

The specification is given in Figure 5.2. Notice that in the specification

2The original version of Bakery algorithm is non-atomic. We have chosen the atomic
version because it generates fewer proof obligations.

Discrete systems 71

module bakery

Specification
Init ≡ pc1 = 0 ∧ pc2 = 0 ∧ t1 = 0 ∧ t2 = 0

NCrit1 ≡ pc1 = 0 ∧ pc′1 = 1 ∧ unchanged 〈pc2, t1, t2 〉
Req1 ≡ pc1 = 1 ∧ pc′1 = 2 ∧ t ′1 = t2 + 1 ∧ unchanged 〈pc2, t2 〉
Try1 ≡ ∧ pc1 = 2 ∧ (t2 = 0 ∨ t1 ≤ t2)

∧ pc′1 = 3 ∧ unchanged 〈pc2, t1, t2 〉
Crit1 ≡ pc1 = 3 ∧ pc′1 = 4 ∧ unchanged 〈pc2, t1, t2 〉
Exit1 ≡ pc1 = 4 ∧ pc′1 = 0 ∧ t ′1 = 0 ∧ unchanged 〈pc2, t2 〉

NCrit2 ≡ pc2 = 0 ∧ pc′2 = 1 ∧ unchanged 〈pc1, t1, t2 〉
Req2 ≡ pc2 = 1 ∧ pc′2 = 2 ∧ t ′2 = t1 + 1 ∧ unchanged 〈pc1, t1 〉
Try2 ≡ ∧ pc2 = 2 ∧ (t1 = 0 ∨ ¬(t1 ≤ t2))

∧ pc′2 = 3 ∧ unchanged 〈pc1, t1, t2 〉
Crit2 ≡ pc2 = 3 ∧ pc′2 = 4 ∧ unchanged 〈pc1, t1, t2 〉
Exit2 ≡ pc2 = 4 ∧ pc′2 = 0 ∧ t ′2 = 0 ∧ unchanged 〈pc1, t1 〉
Next ≡ ∨ NCrit1 ∨ Req1 ∨ Try1 ∨ Crit1 ∨ Exit1

∨ NCrit2 ∨ Req2 ∨ Try2 ∨ Crit2 ∨ Exit2

vars ≡ 〈pc1, pc2, t1, t2 〉
Bakery ≡ Init ∧2[Next]vars ∧WFvars(Next)

Theorem
1. Bakery → 2¬(pc1 = 3 ∧ pc2 = 3)
2. Bakery → 2(pc1 = 2→ 3pc1 = 3)
3. Bakery → 2(pc2 = 2→ 3pc2 = 3)

Figure 5.2: Module bakery.

we use variable pc1 and pc2 whose values ranging over 0..4 for representing

the control locations, i.e. l0..l4 and m0..m4 for process 1 and 2, respectively.

The properties to be verified are stated in the Theorem part.

Figure 5.3 shows the suitable predicate diagram for the Bakery algorithm.

Using Theorem 5.4.1 we can show that the predicate diagram in Figure 5.3

conforms to the specification Bakery in Figure 5.2. For example, we have:

• Init → pc1 = 0 ∧ pc2 = 0 ∧ t1 = 0 ∧ t2 = 0 ∧ t1 ≤ t2

•

pc1 = 1 ∧
pc2 = 1 ∧
t1 = 0 ∧
t2 = 0 ∧
t1 ≤ t2

 ∧ [Next]v →

pc1 = 1 ∧
pc2 = 1 ∧
t1 = 0 ∧
t2 = 0 ∧
t1 ≤ t2

 ∨

pc1 = 2 ∧
pc2 = 1 ∧
t1 > 0 ∧
t2 = 0 ∧
¬(t1 ≤ t2)

Encoding the predicate diagram in Promela, the input language of SPIN,

as described in Section 5.4.2, and then model-checking the resulted transition

72 Chapter 5

t1 ≤ t2

t1 ≤ t2

t1 ≤ t2

t1 ≤ t2

t1 ≤ t2

t1 ≤ t2

¬(t1 ≤ t2)

¬(t1 ≤ t2)

¬(t1 ≤ t2)

t1 = 0,
t2 = 0,

t2 = 0,
t1 = 0,

t1 > 0,
t2 = 0,

t1 > 0,
t2 = 0,

t1 > 0,
t2 = 0,

t1 = 0,
t2 > 0,

t2 > 0,
t1 = 0,
t2 > 0,

t1 > 0, t1 > 0,
t2 > 0,

t1 > 0,
t2 > 0, t2 > 0, t2 > 0,

t1 > 0, t1 > 0,
t2 > 0,

t1 > 0,
t2 > 0, t2 > 0,

t1 > 0,
t2 > 0,

t1 > 0,
t2 > 0,

¬(t1 ≤ t2)

¬(t1 ≤ t2)

pc1 = 0,
pc2 = 0,

pc1 = 1,
pc2 = 0,

pc1 = 0,
pc2 = 1,

pc2 = 0,

pc1 = 3,
pc2 = 0,

pc1 = 4,
pc2 = 0,

pc1 = 0,
pc2 = 2,

pc2 = 3,

pc2 = 4,

pc1 = 1,
pc2 = 1,

pc1 = 2,
pc2 = 1,

pc1 = 1,
pc2 = 2,

pc1 = 0,

pc1 = 0,pc1 = 1,
pc2 = 3,

pc1 = 2,
pc2 = 2,

pc1 = 2,
pc2 = 2,

pc1 = 3,
pc2 = 1,

pc1 = 4,
pc2 = 1,

pc1 = 3,
pc2 = 2,

pc1 = 2,
pc2 = 3,

pc1 = 1,
pc2 = 4,

pc1 = 2,
pc2 = 4,

pc1 = 4,
pc2 = 2,

t1 = 0,
t2 = 0,

t1 = 0,
t2 = 0,

t1 > 0,
t2 = 0,

t1 = 0,

t2 = 0,

t2 = 0,

t1 = 0,

t1 = 0,

t1 = 0,

t1 ≤ t2t1 ≤ t2

t1 ≤ t2

t1 ≤ t2 t1 ≤ t2¬(t1 ≤ t2)

¬(t1 ≤ t2)

¬(t1 ≤ t2) t1 ≤ t2

Exit1 Exit2

NCrit1 NCrit2

Exit2

Req1 NCrit2
NCrit1 Req2

Exit1

Try1 NCrit2 NCrit2
Req2Req1

Try2

Crit1 NCrit2 Try1
Req2 Req1 Try2 NCrit2 Crit2

NCrit1Crit2Req1Try2Try1
Req2Crit1NCrit2

Req2 Crit1 Crit2
Req1

Exit1Exit2

¬(t1 ≤ t2)

t1 ≤ t2

pc1 = 2,

Figure 5.3: Predicate diagram for Bakery algorithm.

Discrete systems 73

system using SPIN, we can verify the mutual exclusion and eventual access

properties of Bakery algorithm.

5.6 Completeness of predicate diagrams

Proving the completeness of predicate diagrams means to show that for any

specification and any formula of the temporal propositional logic (in this case

we take pTLA*), if the specification implies the formula, then the implication

can be proven by a suitable predicate diagram.

Theorem 5.5 For any specification, Spec ≡ Init ∧ 2[Next]v ∧ Lf and any

formula of pTLA*, F , if |= Spec → F holds, then there exists a predicate

diagram G = (N , I , δ, o, ζ) such that Spec E G and tr(G) ⊆ F hold.

Before we prove the main theorem we present some definitions and sup-

porting statements.

Definition 5.6 Given a run through a predicate diagram, ρ = (s0, n0,A0)(s1,

n1,A1) We define inf(ρ) to be the set of nodes which occur infinitely often

in ρ.

Given a predicate diagram, a specification and a node of the diagram, we

assume that if some condition hold then we can determine the states that

are reachable by the specification that hold at that node.

Assumption 5.7 (accessible states 1) Let G = (N , I , δ, o, ζ) be a predicate

diagram over P and A and Spec = Init∧2[Next]v ∧Lf be a specification. Let

Σ be a set of states that are reachable by Spec. Then there exists a mapping

acc1 from nodes to predicates, such that for every state in Σ and for every

node in N , s [[acc1(n)]] iff there exists a model prefix s0s1 . . . sk of Spec and

a run prefix through G , ρ = (s0, n0,A0)(s1, n1,A1) . . . (sk , nk ,Ak) such that

sk = s and nk = n. That is, acc1(n) represents the accessible states at node

n.

In this following proof, we partially rely on the concept of scs for repre-

senting the loops of the systems. We recall scs as a set of nodes such that

for every pair of nodes there exists a path connecting them that visits only

nodes in the set.

A scs is called Spec-reachable if there exists some model of Spec such

that its corresponding run through G visits every node in this scs. Using

the Assumption 5.7, Spec-reachable scs can be defined as follows.

74 Chapter 5

Definition 5.8 (Spec-reachable scs) Let G = (N , I , δ, o, ζ) over P and A
be a predicate diagram, Spec = Init ∧ 2[Next]v ∧ Lf be a specification and

S = {n1, . . . , nk} be a scs of G. Then S is called a Spec-reachable scs if for

every i ∈ 1..k, acc1(n i) 6= ∅.

It is clear that every Spec-reachable scs is also a reachable scs of G , i.e.,

for every node n in the scs, there exists a path from some initial node in I

to n.

Generally, scss in the diagram correspond to loops in the system. Since

the objective of the diagram is to approximate a set of computations as

precisely as possible, we want to exclude from the diagram those sequences

of states that are not computations of the system.

Definition 5.9 (accepting run) Let G = (N , I , δ, o, ζ) be a predicate dia-

gram over P and A and Spec ≡ Init ∧2[Next]v ∧Lf be a specification. Then

a run through G , ρ = (s0, n0,A0)(s1, n1,A1) . . . is called an accepting run if

s0s1 . . . |= Spec.

A scs is called accepting if there is some accepting run through a predicate

diagram that visits every node of the scs infinitely often.

Definition 5.10 (accepting scs) Let G = (N , I , δ, o, ζ) over P and A be

a predicate diagram, S = {m1, . . .mk} be a scs of G and Spec = Init ∧
2[Next]v ∧ Lf be a specification. S is called accepting if there exists some

accepting run through G, ρ = (s0, n0,A0)(s1, n1,A1) . . . such that inf(ρ) = S.

Otherwise, we call it terminating scs.

If a scs is not Spec-reachable then it is clear that it is also terminating.

We want in particular to exclude the loops of the systems represented by

Spec-reachable but terminating scss by using the ordering annotation. A

scs S is well-founded if there exists some edge labeled with (t ,≺) and every

other edge is labeled with either (t ,≺) or (t ,�), for a term t and a binary

relation � ∈ O=, such that the value of t will not increase along edges labeled

by (t ,�) and will decrease along edges labeled by (t ,≺) whenever this loop

is traversed by some run through G , i.e. there is no run through G which

can stay forever in this loop due to the well-foundedness of the domain.

Definition 5.11 (well-founded scs) Let G = (N , I , δ, o, ζ) over P and A
be a predicate diagram and S = {m1, . . . ,mk} be a scs of G. S is called

well-founded if there exists a pair of term t and a symbol ≺∈ O, such that

{(t ,≺), (t ,�)} ∩ o(m i ,m j) 6= ∅ holds for every edge m i ,m j ∈ S and there

exists some edge (m i ,m j) in S such that (t ,≺) ∈ o(m i ,m j).

Discrete systems 75

In the case of well-founded scs, there is no run through G which can

visit every node in this scs infinitely often due to the well-foundedness of the

domain. Thus, it is obvious that every well-founded scs is also a terminating

scs.

Lemma 5.12 Let

• G = (N , I , δ, o, ζ) over P and A be a predicate diagram,

• Spec = Init ∧2[Next]v ∧ Lf be a specification,

• S = {m1, . . . ,mk} be a Spec-reachable but terminating scs,

• Z = {(m, s) : m ∈ S , s [[acc1(m)]]} be a set containing pairs of node in

S and state in Σ that is reachable at node n, and

• ≺ be an ordering over Z such that (ma, sa) � (mb, sb) iff there ex-

ists some run segment, (s i , n i ,Ai) . . . (s j , n j ,Aj), such that (n i , s i) =

(ma , sa) and (n j , s j) = (mb , sb) that traverses some edge in S.

Then ≺ is a well-founded ordering over Z .

Proof: Let G , S ,Z and ≺ as defined. We will show that ≺ is a well-founded

ordering over Z .

• � is partial order. It is clear reflexive and transitive. To show that

it is also antisymmetric, suppose that (ma , sa) � (mb , sb), (mb , sb) �
(ma , sa) and (ma , sa) 6= (mb , sb). Let (s0, n0,A0)(s1, n1,A1) . . . (sa , na ,

Aa) be a run prefix through G . Then we can continue this sequence

and get (s0, n0,A0)(s1, n1,A1) . . . ((sa , na ,Aa) . . . (sb , nb ,Ab) . . . (sa−1,

na−1,Aa−1))ω, where na−1 is the predecessor of na in the path from nb

to na , that traverses every edge in S infinitely often, a contradiction.

• ≺ is well-founded. Suppose there exists a sequence of elements of Z ,

(n1, s1)(n2, s2) . . . such that (n1, s1) � (n2, s2) � Then we can

construct an accepting run through G that traverses every node in S

infinitely often, a contradiction. �

The following assumption will be needed later for determining the order-

ing annotation of the predicate diagram.

Assumption 5.13 (existence of ordering annotation) We assume that our

language is sufficiently expressive to encode a suitable term such that for

every scs S in G, if it is Spec-reachable but terminating scs then we can

find a pair of term t and a binary symbol ≺∈ O= for the suitable ordering

annotation for S .

76 Chapter 5

Corollary 5.14 Every Spec-reachable but terminating scs is well-founded.

We also define the so-called fair-exit of a scs which is some action A such

that ζ(A) = WF such that A can be taken at every node in S but cannot be

taken along every edge in S or if there exists some action A with ζ(A) = SF

such that A enabled at some node in S but cannot be taken along every edge

in S .

Definition 5.15 (fair-exit) Let G = (N , I , δ, o, ζ) over P and A be a pred-

icate diagram and S = {m1, . . . ,mk} be a scs of G.

1. An action A ∈ A such that ζ(A) = WF is called a weak-exit for S if

• (m i ,m j) /∈ δA holds for every edge m i ,m j ∈ S and

• m i ∈ En(A) holds for every node m i ∈ S.

2. An action A ∈ A such that ζ(A) = SF is called a strong-exit for S if

• (m i ,m j) /∈ δA holds for every edge m i ,m j ∈ S and

• there exists some node m i ∈ S such that (m i , n) ∈ En(A) holds

for some node n ∈ N \ S.

Let Spec ≡ Init ∧2[Next]v ∧Lf be a system specification and F be a pTLA*

formula such that |= Spec → F holds. We construct a predicate diagram G

such that Spec E G and tr(G) ⊆ F hold.

We will construct three Muller automata in this proof. First, we construct

a Muller automaton Mf = (Q f , Qf
0 ,∆

f ,F f) for formula F using Construc-

tion 4.10. We call this automaton formula automaton.

Lemma 5.16 (properties of Mf)

1. Let σ = s0s1 . . . be a behavior. Then σ is a model of F iff there exists

an accepting run of Mf , π = q0q1 . . ., such that σ[i..]|≈ q̂iOld ∧ ◦̂qiNext
holds for every i ∈ N.

2. Every scs in Mf is reachable.

Proof: Analogous to the proof of Theorem 4.11 and Lemma 4.19. �

Next, we define some sets and functions as follows:

Discrete systems 77

Definition 5.17 Let Spec ≡ Init ∧ 2[Next]v ∧ Lf be a specification. We

define some sets and functions as follow:

1. A is a set containing Next and every action name that appears in Lf .

2. ζ : A → {NF,WF, SF} is a function mapping every action A ∈ A to

{NF,WF, SF} which is defined by

ζ(A) =

WF whenever |= Spec→WFv(A).

SF whenever |= Spec→ SFv(A).

NF, otherwise.

As before, it is assumed that there exists a function α that assigns an

action formula to every action name A in A. We will leave this assignment

implicit and again write A instead of α(A) when referring to the formula

assigned to the name A.

Based on Definition 5.17 we construct a Muller automaton over the al-

phabet A ∪ {τ} using the following construction.

Construction 5.18 LetMs = (Q s , Qs
0,∆

s ,F s) be a Muller automaton over

A where

1. Q s = Qs
0 = {(T ,B) : T ⊆ A and B ∈ A ∪ {τ}}

2. ∆s is defined by ((T 1,A1),B , (T 2,A2)) ∈ ∆s iff B ∈ T 1 and B = A2

or B = τ and (T 1,A1) = (T 2,A2).

3. F s is defined by

F s =
⋂

A∈A:ζ(A) 6=NF

FA

where FA is a set of scss and

• If ζ(A) = WF then for every F ∈ FA, F contains some location

(T 1,A1) such that A /∈ T 1 or there exists an edge ((T 1,A1), (T 2,

A2)) in F such that A2 = A.

• If ζ(A) = SF then for every F ∈ FA, A /∈ T1 holds for every

location (T 1,A1) in F or there exists an edge ((T 1,A1), (T 2,A2))

in F such that A2 = A.

78 Chapter 5

The intended meaning of a location (T ,A) ∈ Q s is that if T 6= ∅ then

for every action A1 in T , 〈A1 〉v is enabled on the location and for every

action A2 which is not in T , 〈A2 〉v is not enabled on the location, and that

the location has been reached by taking action 〈A〉v if A 6= τ or by taking

a stuttering transition; and if T = ∅ then there is no action in A which

is enabled on this location and the only transition which is enabled is the

stuttering transition τ . The accepting condition is defined in a way such that

it exactly characterizes the fairness of Spec. It includes only those scss in

which every fair transition is either taken or not enabled on some location in

the scs for every action A such that ζ(A) = WF, or is either taken or not

enabled on any location in the scs for every action A such that ζ(A) = SF.

We call the second automaton specification automaton. The first property

of the constructed Muller automaton is stated by the following lemma.

Lemma 5.19 Let σ = s0s1 . . . be a model of Spec. Then there exists an

accepting run π = (T 0,A0), (T 1,A1) . . . such that s i [[〈Ai+1 〉v]]s i+1 holds for

every i ∈ N.

Proof. Let σ = s0s1 . . . be a model of Spec. We inductively define a sequence of
locations π = (T 0,A0)(T 1,A1) . . . such that

1. (T0, A0) ∈ Qs0,

2. For every i ∈ N:

(a) T i = {A ∈ A : s i [[enabled 〈A〉v]]},

(b) if T i = ∅ then Ai+1 = τ else Ai+1 ∈ T i holds for every A ∈ T i ,

(c) ((T i ,Ai),Ai+1, (T i+1,Ai+1)) ∈ ∆s and

(d) if Ai+1 ∈ A then s i [[〈Ai+1 〉v]]s i+1.

For the induction base, we choose a location (T0, A0) ∈ Q0
s such that T 0 =

{A ∈ A : s0[[enabled 〈A〉v]]}. The existence of such location is ensured by the
definition of the locations in the Construction 5.18.

For the induction step, assume that we already have a sequence of locations
(T 0,A0) . . . (T k ,Ak) such that the conditions 1 and 2a hold for every i ∈ 0..k
and conditions 2b, 2c and 2d hold for every i ∈ 0..k − 1. Choose some location
(T ,A) ∈ Qs such that if T k = ∅ then T = ∅ and A = τ and otherwise T = {B ∈
A : sk+1[[enabled 〈B 〉v]]}, A ∈ T k and sk [[〈A〉v]]sk+1. The existence of such
location is ensured by the definition of the transition in the Construction 5.18.

To complete the proof, assume that there exists an action A ∈ A such that
|= Spec → WF(A) and there exists some i ∈ N such that s j [[enabled 〈A〉v]]
holds for every j ≥ i . Then by Definition 5.17, ζ(A) = WF. We show that π

Discrete systems 79

is accepting. From Construction 5.18 and the definition of accepting run, π is
accepting if (T i ,A) holds for infinitely many i ∈ N. Since σ |= Spec holds by
assumption, it follows that s i [[〈A〉v]]s i+1 holds for infinitely many i ∈ N and by
condition 2c, Ai = A holds for infinitely many i ∈ N as required.

For action A ∈ A such that |= Spec → SFv (A), the proof is analogous, replacing
the assumption with ”there exists an action A ∈ A such that |= Spec → SFv (A)
and s i [[enabled 〈A〉v]] holds for infinitely many i ∈ N”. �

The second property of the automaton resulted from Construction 5.18

is related to the definition of accepting conditions.

Lemma 5.20 Let S be a scs in Ms such that S /∈ F s . Then there exists

an outgoing edge ((T 1,A1), (T 2,A)) such that ζ(A) 6= NF.

Proof. Let S be an scs in Ms such that S /∈ F s . Then, from the construction,
there exists some action A ∈ A such that ζ(A) 6= NF, such that Aj 6= A holds
for every edge ((T i ,Ai), (T j ,Aj)) in S , and if ζ(A) = WF then A ∈ T i holds
for every location (T i ,Ai) in S and if ζ(A) = SF then A ∈ T i holds for some
location (T i ,Ai) in S . By the construction of the edges, any location on which
a transition is enabled has outgoing edges for the transition, and therefore in the
case of ζ(A) = WF, ((T i ,Ai), (T j ,A)) holds for every location (T i ,Ai) in S and
in the case of ζ(A) = SF, ((T i ,Ai), (T j ,A)) holds for every location (T i ,Ai) in S
such that A ∈ T i . �

Next, we construct an automaton which is the product automaton ofMf

andMs . Since the input alphabet ofMf andMs are different we cannot use

the standard product automaton construction, Construction 4.2. In this case

we take A ∪ {τ} which is the input alphabet of Ms as the input alphabet.

Construction 5.21 The product automaton Mp of Mf and Ms over al-

phabet A ∪ {τ} is a tuple (Qp ,Qp
0,∆

p ,Fp) where Qp, Qp
0 and Fp are given

by:

• Qp = Q f ×Q s ,

• Qp
0 = Qf

0 ×Qs
0,

• Fp = Fpf ∩ F
p
s where Fpf = Ff ×Qs and Fps = Qf ×F s;

whereas ∆p is defined in a way such that ((q i , (T i ,Ai)),A, (q i+1, (T i+1,Ai+1))

∈ ∆p iff

• (qi, x, qi+1) ∈ ∆f ,

80 Chapter 5

• ((Ti, Ai), A, (Ti+1, Ai+1)) ∈ ∆s and

• |≈ q̂iOld → enabled 〈A〉v.

Notice that the definition of the transition relation ensures that ∆p con-

tains only relations that appears in Mf and Ms .

Some important properties of Mp which will be used later are stated in

the following lemma.

Lemma 5.22

1. Let σ = s0s1 . . . be a model of Spec ∧F . Then there exists an accepting

run π = (q0, (T 0,A0))(q1, (T 1,A1)) . . . such that σ[i..]|≈ q̂iOld ∧ ◦̂qiNext
and s i [[〈A〉v]]s i+1 holds for every i ∈ N.

2. Let σ = s0s1 . . . be a model of Spec. If |= Spec → F then there ex-

ists an accepting run π = (q0, (T 0,A0)) (q1, (T 1,A1)) . . . such that

s i [[〈Ai+1 〉v]]s i+1 holds for every i ∈ N.

3. Let S be a scs in Mp such that S /∈ Fps . Then there exists an outgoing

edge ((q1, (T 1,A1)), (q2, (T 2,A2))) such that ζ(A2) 6= NF.

4. For every scs S in Mp, for every location q in S, there exists some

path from some initial location q0 ∈ Qp
0 to n.

Proof: (sketch)

1. It follows from Lemma 5.16(1), Lemma 5.19 and Construction 5.21.

2. It follows from the assumption that Spec implies F , Lemma 5.19 and Con-
struction 5.21.

3. It follows from Lemma 5.20 and Construction 5.21.

4. By Lemma 4.19 every scs of Mp is reachable. By Construction 5.18 every
location of Ms is an initial location. Thus Construction 5.21 ensures that
every scs of Mp is reachable. �

The next step is the construction of predicate diagram that is expected

to be the suitable predicate diagram we are looking for. We use the following

assumption for defining the nodes of the diagrams. This assumption is similar

to Assumption 5.7, only now we consider the relation between specification

and product automaton.

Discrete systems 81

Assumption 5.23 (accessible state 2) Let Spec = Init ∧2[Next]v ∧ Lf be a

specification and Mp be the product automaton resulted from Construction

5.21. Let Σ be a set of states that are reachable by Spec. Then there exists

a mapping acc2 from locations to predicates such that s [[acc2((q , (T ,A))]] iff

there exists a model prefix s0s1 . . . sk of Spec and a run prefix π =(q0, (T 0,A0))

(q1, (T 1,A1)) . . . (qk , (T k ,Ak)) of M such that for every i ∈ 0..k, si[[q̂iOld]]

and s i [[enabled 〈B 〉v]] holds for every B ∈ T i . That is, acc2((q , (T ,A))

represents the accessible states at location (q , (T ,A)).

Construction 5.24 (predicate diagram) Let Mp = (Qp, Qp
0,∆

p,Fp) be the

product automaton from Construction 4.2. We define a predicate diagram

G = (N , I , δ, o, ζ) as follows:

• For every location (q , (T ,A)), G contains a node labeled by acc2((q , (T ,

A)) in N . Moreover, this node is in I iff (q , (T ,A)) ∈ Qp
0 .

• For every A ∈ A and every n,m in N , (n,m) ∈ δA iff there exists

a transition ((q1, (T 1,A1)), (x ,A2), (q2, (T 2,A2))) ∈ ∆p such that n =

acc2((q1, (T 1,A1))), m = acc2((q2, (T 2,A2))) and A2 = A.

• o = ∅.

• ζ as defined in Definition 5.17.

We can prove that every model of Spec is a trace through this diagram

but we still cannot guarantee that every trace through the diagram is a model

of F . We should exclude the runs through the diagram whose corresponding

traces are not the models of Spec by making some scss in G terminating.

Definition 5.25 (corresponding scs) For a scs S = {n1, . . . , nk} in G, we

call a scs in Mp , S ′ = {(q1, (T 1,A1)), . . . , (qk , (T k ,Ak))} the corresponding

scs of S if n i = acc2((q i , (T i ,Ai))) holds for i ∈ 1..k.

A scs S of G is terminating if the corresponding scs S ′ in Mp is not

accepting, i.e. S ′ /∈ Fp or S ′ /∈ Fpf ∩ F
p
s .

Lemma 5.26 Let S be a scs in G and S ′ be its corresponding scs in Mp.

If S ′ /∈ Fps then S is a fair-exit scs.

Proof. By Lemma 5.22 (3) for every scs S ′ such that S′ /∈ Fps , there exists
an out-going edge ((q1, (T 1,A1)), (q2, (T 2,A2))) such that ζ(A2) 6= NF. Since
Construction 5.24 does not change the underlying graph of the automaton, the
resulted predicate diagram has also this property and by Definition 5.15, A2 now
become the fair-exit for S . �

82 Chapter 5

Lemma 5.27 Let S be a scs in G and S ′ be its corresponding scs in Mp.

If S ′ /∈ Fpf then S is a Spec-reachable scs.

Proof. By Lemma 5.22, inherits from the property of Mf , every scs of Mp is
reachable. Since by assumption Spec → F , S is also a Spec-reachable scs. �

Since terminating scs of G is Spec-reachable, by Assumption 5.13 we can

define the ordering annotation of G .

It remains to prove the two following lemmas to complete the proof of

Theorem 5.5. Notice we do not use Conformance 5.4 to prove that G con-

forms to Spec.

Lemma 5.28 Every model of Spec is a trace through G.

Proof. Let σ = s0s1 . . . be a behavior such that σ |= Spec. By Lemma 5.22
(2), there exists an accepting run of Mp , π = (q0, (T 0,A0))(q1, (T 1,A1)) . . . such
that s i [[〈A〉i+1]]s i+1 holds for every i ∈ N. We define a run through G , ρ =
(s0, acc2((q0, (T 0,A0))),A1), (s1, acc2((q1, (T 1,A1))),A2) The existence of such
a run is ensured by the Construction 5.24, since it doesn’t change the underlying
graph. Let S be inf(ρ) and let S ′ = inf(π) be the corresponding scs of S . Since
π accepting, S ′ ∈ Mp . By the definition of accepting condition in Construction
5.18 and the definition of ordering annotation of G , S is an accepting scs. �

Lemma 5.29 Every trace through G satisfies F .

Proof. Let σ = s0s1 . . . be a trace through G , ρ = (s0,n0,A0)(s1,n1,A1) . . . be
the corresponding run of σ, and S be a scs of G such that inf(ρ) = S . Assume that
σ = s0s1 . . . 6|= F . Let S ′ be the corresponding scs of S in Mp . By assumption
σ 6|= F , implies that S /∈ Fp . If S′ /∈ Fpf , then by Lemma 5.27 S is a Spec-reachable
scs. Moreover, since S ′ is not accepting, S is terminating. By Corollary 5.14 S
is well-founded. If S′ /∈ Fps , then by Lemma 5.26, S has a fair-exit. But then, by
assumption inf(ρ) = S , contradiction. �

5.7 Discussion and related work

We have presented a method for the verification of discrete systems. Dis-

crete systems are represented as TLA* formulas. The verification is done by

using predicate diagrams. Predicate diagrams integrate the deductive and

algorithmic verification techniques. In our approach, the verification is done

in two steps. The first step is to find a predicate diagram that conforms

Discrete systems 83

to the specification. This conformance is proven deductively by proving the

proof obligations as stated in Theorem 5.4. The second step is regarding the

predicate diagram as a finite labeled transition system which amenable for

model-checking. We have applied our approach on the Bakery algorithm.

We show that predicate diagram is complete, i.e. for any specification

and any formula of the temporal propositional logic, if the specification im-

plies the formula, then the implication can be proven by a suitable predicate

diagram. Given a specification Spec and a pTLA* formula F such that

Spec satisfies F , we have proven the completeness by generating a predicate

diagram that conforms Spec and satisfies F . In proving these complete-

ness we construct three Muller automata: the formula automaton Mf , the

specification automaton Ms and the product automaton Mp . The formula

automaton is automaton which accepts exactly the behaviors satisfying F .

We used the construction described in Chapter 4. Based on the information

in the specification, in particular the actions contained in Spec, we construct

the specification automaton such that the accepting condition is defined in a

way such that it exactly characterizes the fairness of Spec. The specification

automaton has properties that it conforms to Spec. The third automaton is

the product automaton of Mf and Ms . Thus, the properties of Mp are in-

herited fromMf andMs . The last step is translate this product automaton

into the final predicate diagram.

The first work using graphs to visualize and structure temporal proofs

for concurrent programs is due to Owicki and Lamport [90]. There, proof

lattices are used to better explain logic rules and to ”see” and so verify what

a program is supposed to do. Building on these ideas, proof charts were

introduced in Cousot’s thesis [35]. A proof chart for a transition system

is a finite graph with a unique start and final state. Proof obligations are

associated with every sub-chart, and ”return” edges can be labeled by well-

founded orderings to guarantee terminating of the system. In contrast to our

diagram, these approaches concentrate on illustrating the structure of the

proof rather than of the system under analysis.

Predicate-action diagrams proposed by Lamport [70] represent the safety

part of specifications. An interesting point is that different, complementary

views about a specification can be illustrated by different diagrams and that

the proof of refinement relations via diagrams is considered.

Manna et al. have also advocated the diagrammatic verification of tem-

poral logic properties [19]. Verification Diagrams, introduced by Manna &

Pnueli [79], provide graphical representation of the direct proof of tempo-

ral properties. Verification diagrams are dedicated to particular classes of

84 Chapter 5

properties: Invariance diagrams which used to prove invariance properties,

Wait-for diagrams for precedence properties and Chain and Rank diagrams

that can be used to prove response properties. Generalized Verification Di-

agrams [20, 99] extend the framework to arbitrary temporal formulas. Mod-

ular Verification Diagrams [21] allow the combination of several generalized

verification diagrams into a single proof. The combined set represents the

intersection of the languages described by each diagram. Fairness diagram

[41] represents the possible system states and transitions: the progress and

response properties of the system are encoded by fairness constraints which

generalize the usual notions of fairness. Given a system and a temporal

specification, a proof begins with an initial fairness diagram that directly

corresponds to the system. This diagram is then transformed into one which

corresponds directly to the specification, or which can be shown to satisfy it

by purely algorithmic methods.

The main difference of their approach to our diagram is in the represen-

tation of fairness conditions, which we assert on the level of entire diagrams

rather than for individual edges. This simplifies the verification conditions

related to fairness assumptions. We also allow an arbitrary number of order-

ing annotations, which reduces the number of proof obligations, and should

be more intuitive for a system designer.

In our proof, we rely on the expressiveness of our language in encoding

such ordering whenever some conditions hold. Although some methods for

defining such ordering systematically have been proposed, for example the

work from Dams et al. [38], practically the ordering is still defined manually

and intuitively.

The completeness proof here is inspired by the completeness proof of

generalized verification diagrams[99], in particular the use of Muller automata

for proving the completeness.

The formal translation of predicate diagrams into SPIN code is given in

[83].

Chapter 6

Real time systems

6.1 Overview

Computers are frequently used in critical applications where predictable res-

ponse times are essential for correctness. Examples of such applications in-

clude controllers for aircraft, industrial machinery and robots. Such systems,

that capture the metric aspects of time, are called real-time systems. This

chapter is devoted to the specification and verification of real-time systems.

First, we give the standard formula for real-time specification we use here.

A real-time program can be written as the conjunction of its untimed version,

expressed in a standard way as a TLA* formula, and its timing assumptions,

expressed in terms of a few standard parameterized formulas. This form

is, again, a restricted form of the general specification described in Chapter

3. The separation between specification of untiming and timing properties

makes real-time specification easier to write and to understand.

In the next section, we define a variant of predicate diagrams, which we

call timed predicate diagrams that can be used to verify real-time systems.

A timed predicate diagram can be viewed as a predicate diagram equipped

with some components in order to constraint the time.

The verification of real-time systems using timed predicate diagrams will

be given section 6.4. As illustration, we take the Fischer’s protocol problem,

which will be given in Section 6.5.

To conclude this chapter, we give some related work and discuss our

approach.

85

86 Chapter 6

6.2 Specification

We now describe the real-time systems specification. In the whole discussion

we denote by ∞ a value that is greater than any real number.

We follow the general format of TLA real-time specification suggested

by Abadi & Lamport in [1] where real time is modeled by a non-negative

real-valued variable now. We assume that initially now is equal to 0, and it

increases monotonically and without bound, which excludes ”Zeno” behav-

iors1. Because it is convenient to make time-advancing steps distinct from

ordinary program steps, the tuple of the system’s (discrete) variables, v ,

should not change when now advances. This condition can be expressed by

the time-progress formula RTNow(v), which is defined as follows:

RTNow(v) ≡ ∧ now ∈ R+

∧ 2[now′ ∈ {r ∈ R+ : r > now} ∧ unchanged v]now
∧ ∀r ∈ R+ :<> (now > r)

(6.1)

We express real-time constraints by placing timing bounds on actions.

Such an action on which we place the timing bound is called a time-bounded

action. For any time-bounded action A, we associate a real variable t which

we call the corresponding timer of A. We assume that neither t nor now

appear in A. We now define a formula Timer(t) for asserting that t always

equals the length of time that 〈A〉v has been continuously enabled since the

last 〈A〉v step. The value of t should be set to 0 by an 〈A〉v step or a

step that disables 〈A〉v . A step that advances now should increment t by

now ′ − now iff 〈A〉v is enabled. Changes to t are therefore described by the

action:

TNext(A, v, t) ≡ t′ = if 〈A〉v ∨ ¬(enabled 〈A〉v)′ then 0

else t+ (now′ − now).
(6.2)

The meaning of Timer(t) is interesting only when v is a tuple whose

components include all the variables that may appear in A. In this case, a

step that leaves v unchanged cannot enabled or disabled 〈A〉v . The formula

Timer(t), therefore, should allow steps that leave t , v , and now unchanged.

We let initial value of t be 0,

1A behavior such that time keeps advancing but is bounded by some limit.

Real time systems 87

TInit(t) ≡ t = 0, (6.3)

and define

Timer(A, v, t) ≡ TInit(t) ∧2[TNext(A, v, t)]〈t,v,now〉. (6.4)

Basically, the specification of real-time systems are similar to the one

given by Formula 3.1. They differ only on the way we govern when the

transitions may, or must, be taken. In real-time systems, we should state

explicitly those conditions in the term of time unit. Since, it is conventional to

express timing assumptions by a mix of lower and upper bound, we introduce

two real numbers d and e, where 0 ≤ d ≤ e ≤ ∞, to govern when 〈A〉v
transition may, or must, be taken:

• 〈A〉v can be taken if it has been continuously enabled for at least d

seconds since the last 〈A〉v step - or since the beginning of the behavior.

This property is expressed by the formula:

MinTime(A, v, t, d) ≡ 2[A→ (t ≥ d)]v. (6.5)

We call d the lower bound of t .

• 〈A〉v can be continuously enabled for at most e seconds before an 〈A〉v
step must occur. This property is expressed by the formula:

MaxTime(t, e) ≡ 2(t ≤ e). (6.6)

We call e the upper bound of t .

We now define the so-called real-time bound formula which will be asso-

ciated to every bounded-time action in our specification:

RTBound(A, v, t, d, e) ≡ ∧ Timer(A, v, t)
∧ MaxTime(t, e)

∧ MinTime(A, v, t, d).

(6.7)

88 Chapter 6

The specification of real-time systems now can be written as formula of

the form:

RTSpec ≡ Init ∧2[Next]v ∧RTNow(v) ∧RT (6.8)

where Init ,Next and v are as defined in Formula 3.1, RTNow(v) is the for-

mula defined in Formula (6.1), and RT is a conjunction of real-time bound

formulas RTBound(Ai , v , t i , d i , e i) where Ai is a sub-action or disjunct of

Next .

In Figure 6.1, we give a small example of a real-time system. This system

consists of two process, Up and Down and a shared variable x . Initially x

is set to some natural number. Process Up keeps incrementing x ; whereas

process Down is responsible to set x to 0 whenever x is greater than 0. We

put a time constraint on the process Down, such that x must be reset to 0 in

not more than 3 seconds after x becomes greater than 0. We want to prove

that always eventually x is equal to 0.

module loop

Specification
Init ≡ x ∈ N
Up ≡ x ′ = x + 1

Down ≡ x > 0 ∧ x ′ = 0
Loop ≡ Init ∧2[Up ∨Down]x ∧ RTNow(x)

∧ RTBound(Down, x , t , 0, 3)

Theorem
1. Loop → 23(x = 0)

Figure 6.1: Module Loop.

6.3 Timed predicate diagrams

We now present timed predicate diagrams, or tpds for short, which are a

variant of predicate diagrams described in the previous section. The idea

of these diagrams is to use the components of predicate diagrams related to

the discrete properties and to replace the components related to the fairness

conditions with some components related to real-time conditions.

For the components related to real-time property, we adopt the structure

of timed-automata (see Section 4.4). A tpd is equipped with a finite set of

Real time systems 89

real-valued variables that measure time. These variables are called timers.

Every timer is associated with some predicates over it, which we call time-

constraints.

Definition 6.1 (time-constraint) A time-constraint is a state predicate of

the form c#z or c1−c2#z where c, c1 and c2 are timers, # ∈ {≤, <,=, >,≥}
and z is a real constant, including ∞.

For a set of timers C , we denote by ΦC and ψ(ΦC), the set of time-

constraints over timers c ∈ C and the set containing all c ∈ C that appears

in ΦC , respectively.

We now give the formal definition of tpds.

Definition 6.2 (tpd) Given a set of state predicates P, a set of actions A,

a set of timers C and a set of time-constraints over the timers in C , ΦC,

tpd T over P ,A,C and ΦC is given by a tuple (N , I , δ, o, r , g ,R) where

• N , I , δ and o as defined in Definition 5.1.

• A mapping r : N → 2ΦC that associates a set of time-constraints in

ΦC with every node in N .

• A mapping g : N ×N → 2ΦC that associates a set of time-constraints

in ΦC with every edge in δ.

• A mapping R : N ×N → 2C that associates a set of timers in C with

every edge in δ.

We say that the action A ∈ A can be taken at node n ∈ N iff (n,m) ∈ δA

holds for some m ∈ N , and denote by En(A) ⊆ N the set of nodes where A

can be taken. We say that the action A ∈ A can be taken along (n,m) iff

(n,m) ∈ δA.

A timer c ∈ C is called an active timer on a node n ∈ N if there exists some

node m ∈ N such that g(n,m) contains some time-constraint over c. We

denote by act(n) the set of active timers on n.

Like predicate diagrams, tpd can be viewed as a labeled directed graph.

Different from predicate diagrams, the nodes of tpds may be labeled with

one more set of predicates which we call time-invariant. This invariant and

the state predicates over system’s discrete variables must be satisfied on every

node.

The edges of tpds may be labeled with actions and time-constraints,

which we call guards, and a set of timers, which we call reset timers. Guards

90 Chapter 6

will be used to model the timing conditions that constrain the execution of

transitions. Every reset timer will be reset to 0 whenever this transition is

taken.

Besides the transitions that are explicitly represented by the edges and

the stuttering transitions, τ , we introduce a special transition called tick for

representing the elapsing time. Like τ , transition tick remains in the source

node. For every node n and every active timer on it, we require that the

value of every active timer increases whenever tick is taken.

Figure 6.2 shows a tpd over P = {x = 0, x ≥ 0},A = {Up,Down},
ΦC = {t ≥ 0, t ≤ 3}. Every node consists of two parts: the first part, above

the dashed line, contains the predicates over the system’s discrete variables,

the second part, below the dashed line, contains all time-constraints in time-

invariant that hold on that node. For every edge (n,m) we write t : = 0 for

every timer t in R(n,m).

x = 0

t ≤ 3

x ≥ 0 Up

t := 0 t ≥ 0

Up

Down

Figure 6.2: An example of tpd.

tpds can be viewed as an extension of predicate diagrams. In the other

direction, we may say that predicate diagrams are restricted tpds. Partic-

ularly, when we eliminate all the components of tpds that are related to

real-time property, then we have predicate diagrams without fairness condi-

tions. We call such a predicate diagram the untimed version of a tpd.

Definition 6.3 (untimed version) Let T = (N , I , δ, o, r , g ,R) be a tpd over

P ,A,C and ΦC . The predicate diagram G = (N , I , δ, o, ∅) over P and A is

called the untimed version of T .

We now define runs and traces through a tpd as the set of behaviors that

correspond to runs satisfying the node and edge labels.

Definition 6.4 (runs, traces) Let T = (N , I , δ, o, r , g ,R) over P ,A,C and

ΦC as defined. A run of T is ω-sequence ϑ = (s0, n0,A0,∆0)(s1, n1,A1,

∆1) . . . of quadruples where s i is a state, n i ∈ N is a node, Ai ∈ A∪{τ, tick}
is an action and ∆i is a real number such that all of the following conditions

hold:

Real time systems 91

1. n0 ∈ I is an initial node.

2. s0[[c]] = 0 holds for every c ∈ C .

3. For every i ∈ N hold the following conditions:

(a) si[[ni ∧ r(ni)]].
(b) Either Ai ∈{τ, tick} and n i = n i+1 or Ai ∈ A and (n i , n i+1)∈δAi .

(c) If Ai ∈ A and (t ,≺) ∈ o(n i , n i+1), then s i+1[[t]] ≺ s i [[t]].

(d) If Ai ∈{τ, tick} then s i+1[[t]]�s i[[t]] holds whenever (t ,≺)∈o(n i ,m)

for some m ∈ N .

(e) If Ai = τ then ∆i = 0 and s i+1[[c]] = s i [[c]] holds for every c in C .

(f) If Ai = tick then ∆i > 0 and s i+1[[c]] = s i [[c]] + ∆i holds for

every active timer c on n i and s i+1[[c]] = s i [[c]] holds for remaining

timers.

(g) If Ai ∈ A then ∆i = 0, s i [[g(n i , n i+1)]] and s i+1[[c]] = 0 holds for

every c in R(n i , n i+1) and s i+1[[c]] = s i [[c]] holds for remaining

timers .

We write runs(T) to denote the set of runs of T .

The set tr(T) of traces through T consists of all behaviors σ = s0s1 . . .

such that there exists a run ϑ = (s0, n0,A0,∆0)(s1, n1,A1,∆1) . . . of T based

on the states in σ.

6.4 Verification

In this section we describe the verification of real-time systems using tpds.

Assume given a real-time specification RTSpec and a property F . We

recall that in TLA* formalism, the proof that RTSpec satisfies F can be

considered as proving the validity of RTSpec → F . Following the approach

of the verification of discrete systems using predicate diagrams, we split the

proof into two steps: finding a tpd T such that every model of RTSpec is a

trace through T and then proving that every trace through T is a model of

F . The first step is done by considering node and edge labels of predicates

on the concrete state space of RTSpec and reducing the trace inclusions to

a set of first-order verification conditions that concern individual states and

transitions. Thus, the first step is done deductively. On the other hand, the

second step is done by regarding the node labels related to discrete properties,

and probably the auxiliary invariants, as Boolean variables and then encoding

92 Chapter 6

the diagrams a finite labeled transition system. The temporal properties of

the system is then can be established by model checking.

6.4.1 Relating specifications and TPDs

To compare a specification and a tpd, we first have to assign meaning to

the action names that appear in the diagram. We assume given a function α

that assigns an action formula A every action name. Because no confusion

is possible, we will leave this assignment implicit, and again write A instead

of α(A) when referring to the formula assigned to the name A.

Recalling the general format of real-time specification in Formula 6.8, we

put the time constraints explicitly on timed-bounded actions. In the context

of tpds, the situation is different, since we put time constraints on timers

and not on actions. To overcome this, we define bounded-actions of tpds.

Basically bounded-actions are the same as timed bounded actions, which are

actions on which we put time-constraints.

Definition 6.5 (bounded-action) Let G = (T , I , δ, o, r , g ,R) be a tpd over

P ,A,C and ΦC . An action A ∈ A is called a bounded-action if there exists

some timer c ∈ C and two integer numbers d and e such that the following

conditions hold:

• for every n ∈ N , a predicate of the form c ≤ e is in r(n) whenever

n ∈ En(A),

• for every n,m ∈ N , a predicate of the form c ≥ d is in g(n,m) when-

ever (n,m) ∈ δA and

• for every n,m∈N , c is in R(n,m) whenever (n,m)∈δA or m /∈En(A).

For a bounded action A, we call c, d and e its corresponding timer, lower-

bound and upper-bound, and denote by clk(A), `(A) and µ(A), respectively.

Lemma 6.6 For some-bounded action A and for every node n ∈ N , clk(A)

is an active timer on n if n ∈ En(A).

Proof. Let A be a bounded-action and c be a timer such that c = clk(A) and
let n be a node such that n ∈ En(A). Assume that c is not an active timer on
n, then there is no node m such that c ∈ ψ(g(n,m)). By assumption n ∈ En(A),
which means that there exists some node m such that (n,m) ∈ δA. Moreover,

Real time systems 93

by the definition bounded-action, g(n,m) contains a time-constraint of the form
c ≥ `(A), which implies that c ∈ ψ(g(n,m)). Contradiction. �

We say that a tpd T conforms to a specification RTSpec, written RTSpec

E T , if every behavior that satisfies RTSpec is a trace through T . The fol-

lowing theorem essentially introduces a set of first-order (”local”) verification

conditions that are sufficient to establish conformance of a diagram to a real-

time system specification in standard form.

Theorem 6.7 Let RTSpec ≡ Init∧2[Next]v∧RTNow(v)∧RT be a real time

system specification and T = (N , I , δ, o, r , g ,R) be a tpd over P ,A,C and

ΦC as defined. We say that T conforms to RTSpec if the following conditions

hold:

1. |= Init→
∨
n∈I

n.

2. |≈ n ∧ [Next]v → n′ ∨
∨

(A,m):(n,m)∈δA

〈A〉v ∧m′.

3. For all n,m ∈ N and all (t ,≺) ∈ o(n,m):

(a) |≈ n ∧m ′ ∧
∨

A:(n,m)∈δA

〈A〉v → t ′ ≺ t and

(b) |≈ n ∧ [Next]v ∧ n ′ → t ′ � t .

4. For every bounded-action A:

(a) |= RTSpec → RTBound(A, v , clk(A), `(A), µ(A)),

(b) |= n→ enabled 〈A〉v holds for every node n ∈ En(A),

(c) |= n→ ¬enabled 〈A〉v holds for every node n /∈ En(A),

(d) clk(A) /∈ act(n) holds for every n ∈ N such that n /∈ En(A),

(e) clk(A) /∈ψ(g(n,m)) holds for every n,m∈N such that (n,m) /∈δA

and

(f) clk(A) /∈ R(n,m) holds for every n,m ∈ N such that (n,m) /∈ δA

and m ∈ En(A).

5. |=
∧
c∈C

TInit(c)→ r(n) holds for every n ∈ I .

6. For every bounded action A ∈ A and for every n,m ∈ N :

94 Chapter 6

(a) if (n,m) ∈ δA or m /∈ En(A) then

|≈ r(n) ∧ clk(A) ≥ `(A) ∧ clk(A)′ = 0 ∧∧
A1:clk(A1)∈act(m)

clk(A1)′ ≤ µ(A1)→ r(m)′,

(b) otherwise,

|≈ r(n)∧
∧

A1:clk(A1)∈act(n)

clk(A1)′ ≥ clk(A1)∧clk(A1)′ ≤ µ(A1)→ r(n)′.

Proof. Assume that RTSpec and T are such that all the conditions hold, and that
for every timer c in C , there exists some bounded-action A such that c = clk(A).
Assume σ = s0s1 . . . is a behavior that satisfies RTSpec. We want to show that
σ ∈ tr(T) by constructing the corresponding run through T for σ.

We inductively define a sequence n0,n1, . . . of nodes n i ∈ N and a sequence
A0A1 . . . of sets of actions ∅ 6= Ai ⊆ A ∪ {τ, tick} such that for all i ∈ N the
following conditions hold:

(i) n0 ∈ I
(ii) s i [[n i]]
(iii) Ai = {A ∈ A : (n i ,n i+1) ∈ δA, s i [[〈A〉v]]s i+1 and s i [[now]] = s i+1[[now]]}

∪ {tick : n i = n i+1 and s i [[now]] 6= s i+1[[now]]}
∪ {τ : n i = n i+1 and s i [[now]] = s i+1[[now]]}

(iv) s i+1[[t]] ≺ s i [[t]] whenever (t ,≺) ∈ o(n i ,n i+1) and
(v) s i+1[[t]]�s i [[t]] whenever n i+1 =n i and (t ,≺)∈o(n i ,m) for some m ∈ N .

For the induction base, we choose some node n0 ∈ I such that s0[[n0]] holds.
The existence of some such node is ensured by condition 1 since s0[[Init]] holds by
assumption.

For the induction step, we assume that n0,n1 . . .n i and A0,A1 . . .Ai−1 have
already been defined such that conditions (i)-(ii) hold for all j ≤ i and conditions
(iii)-(v) holds for all j ≤ i − 1. In particular, we have s i [[n i]]. Moreover, the
assumption that σ |= RTSpec implies that s i [[[Next]v]]s i+1, and condition 2 in
Theorem 6.7 ensures that either there exist some action A ∈ A and some n ∈ N
such that (n i ,n) ∈ δA and s i [[〈A〉v ∧ n ′]]s i+1 holds, or s i+1[[n i]]. In the first case,
choose some such node n as n i+1; in the second case, choose n i+1 = n i . In either
case, define Ai as described in condition (iii). These choices imply that s i+1[[n i+1]]
and that Ai 6= ∅. Conditions (iv) and (v) now follow from the choices of n i+1 and
Ai with the help of conditions 3a and 3b in Theorem 6.7.

We have shown that conditions 1, 3b, 3c and 3d in the Definition 6.4 hold. The
assumption that σ |= RTSpec, the condition 4a in Theorem 6.7 and the assumption
for every timer c there exists some bounded-action A such that c = clk(A), imply

Real time systems 95

that s0[[TInit(c)]] holds for every c ∈ C . This also implies that for every c ∈ C ,
s0[[c]] = 0 holds. Thus the condition 2 in Definition 6.4 holds.

To prove that the conditions 3e-3g in Definition 6.4 hold, we define a sequence
∆0∆1 . . . of integer numbers such that ∆i = s i+1[[now]] − s i [[now]] and pick a
sequence of actions A0A1 . . ., such that Ai ∈ Ai holds for every i ∈ N. Choose
some i ∈ N and consider the cases of Ai = τ , Ai = tick and Ai ∈ A.

If Ai = τ then we have n i = n i+1 and s i [[now]] = s i+1[[now]]. By the con-
struction of ∆0∆1 . . ., this also implies that ∆i = 0. Choose some bounded-action
A ∈ A and consider the following cases:

• Assume n i ∈ En(A). Since n i+1 = n i , we have n i+1 ∈ En(A). Condition
4a implies that s i [[TNext(A, v , clk(A))]]s i+1 holds, since by assumption σ |=
RTSpec. Condition 4b ensures that s i+1[[enabled 〈A〉v]] holds. Moreover,
since s i [[now]] = s i+1[[now]], we have s i+1[[clk(A)]] = s i [[clk(A)]].

• Assume n i /∈ En(A). Then we have n i+1 /∈ En(A), which by condition
4c, implies that s i+1[[¬enabled 〈A〉v]] or s i [[¬enabled 〈A〉′v]]. By assump-
tion that σ |= RTSpec and by condition 4a, s i [[TNext(A, v , clk(A))]]s i+1

holds, which implies that s i+1[[clk(A)]] = 0. Again, we have two cases to
consider. First, assume that i = 0. We have shown that s0[[clk(A)]] =
0. Since s i+1[[¬enabled 〈A〉v]], we have s i+1[[clk(A)]] = 0. Second, as-
sume that i > 0. By condition 4c, the condition n i /∈ En(A) implies
that s i [[¬enabled 〈A〉v]], or we can say, s i−1[[¬(enabled 〈A〉v)′]] which
implies that s i [[clk(A)]] = 0. Thus, for both cases, we have s i [[clk(A)]] =
s i+1[[clk(A)]] = 0.

For every bounded-action A, we have shown that s i [[clk(A)]] = s i+1[[clk(A)]]. By
the assumption that for every c ∈ C there exists some bounded action A such that
clk(A) = c, the condition 3e in Definition 6.4 holds.

In the case of Ai = tick , by the construction of A0A1 . . ., we have s i [[now]] 6=
s i+1[[now]]. The assumption that σ |= RTSpec implies that s i+1[[now]] > s i [[now]],
which also implies that ∆i > 0. Do the similar proof as above, we can prove that
for every bounded-action A such that n i ∈ En(A), s i+1[[clk(A)]] > s i [[clk(A)]], and
for every bounded action A such that n i /∈ En(A), s i+1[[clk(A)]] = s i [[clk(A)]]. By
Lemma 6.6 and by the assumption that for every c ∈ C there exists some bounded
action A such that clk(A) = c, we can conclude that the condition 3f in Definition
6.4 holds.

In the case of Ai ∈ A, by the construction of A0A1 . . . and ∆0∆1 . . ., we have
s i [[now]] = s i+1[[now]] and ∆i = 0. Choose some bounded action A ∈ A and
consider the following cases:

• Assume that A ∈ Ai . This implies that (n i ,n i+1) ∈ En(A). By the defini-
tion of bounded-action, we have clk(A) ∈ R(n i ,n i+1). By the construction

96 Chapter 6

of A0A1 . . ., s i [[〈A〉v]]s i+1 holds. The assumption that σ satisfies RTSpec
and condition 4a imply that s i [[TNext(A, v , clk(A))]]s i+1 holds. Moreover,
since s i [[〈A〉v]]s i+1, we have s i+1[[clk(A)]] = 0.

• Assume that A /∈ Ai . If n i+1 ∈ En(A) then by the definition of bounded-
action, clk(A) ∈ R(n i ,n i+1), and we have shown that s i+1[[clk(A)]] = 0. If
n i+1 /∈ En(A) then by condition 4e we have clk(A) /∈ R(n i ,n i+1) and by
construction of A0A1 . . ., s i [[¬〈A〉v]]s i+1 holds. With the same argument as
before, the condition s i [[TNext(A, v , clk(A))]]s i+1 holds, and as consequence
we have s i+1[[clk(A)]] = s i [[clk(A)]], since s i+1[[now]] = s i [[now]].

We have shown that for both cases, the conditions that are related to reset
timers which are required in condition 4g in Definition 6.4 hold.

The definition of bounded-actions and the condition 4f in Theorem 6.7 ensure
that g(n i ,n i+1) contains only the time-constraints over timers which are the cor-
responding timers of some bounded-actions A such that (n i ,n i+1) ∈ δA. In par-
ticular, g(n i ,n i+1) contains time-constraints of the form clk(A) ≥ `(A). The as-
sumption that σ |= RTSpec and condition 4a imply that for every bounded-action
s i [[A→ clk(A) ≥ `(A)]]. The condition 3g in Definition 6.4 holds.

It remains to prove that s i [[n i ∧ r(n i)]] holds for every i ∈ N. We already
know that s i [[n i]] holds for every i ∈ N. We have shown that s0[[TInit(c)]] holds
for every c in C . By condition 5, this implies that s0[[r(n0)]] holds. Consider
again the sequence of A0A1 . . . defined above, choose some j ∈ N and assume that
s i [[r(n i)]] holds for every i ≤ j . If Aj ∈ A then by the definition of bounded-actions
clk(A) ∈ R(n j ,n j +1) and r(n j +1) contains time-constraints of the form clk(A) ≤
µ(A) for every bounded-action A such that n j +1 ∈ En(A). Condition 6a ensures
that s j +1[[r(n j +1)]] holds. If Aj = τ , we have shown that for every bounded-
action A, s j +1[[clk(A)]] = s j [[clk(A)]] and if Aj = tick , we have shown that for
every bounded-action A, either s j +1[[clk(A)]] > s j [[clk(A)]] whenever n j ∈ En(A)
or s j +1[[clk(A)]] = s j [[clk(A)]] whenever n j /∈ En(A). For both cases, condition 6b
ensures that s j +1[[r(n j +1)]] holds. Thus, the condition 3a in Definition 6.4 holds
which completes the proof. �

The first three conditions in Theorem 6.7 are inherited from Theorem

5.1, the conformance theorem of predicate diagrams. Those conditions are

related to the discrete properties of the system. Conditions 4a-4f are related

to the bounded-actions in the diagram and the two last conditions are related

to the time-invariants in the diagrams.

Condition 5 ensures that the time-invariant of every initial node is implied

by the initial condition of every timer. Condition 6 guarantees that the time-

invariants always agree with the changes of the concrete values of the timers

Real time systems 97

whenever a transition is taken. In particular, the condition 6a requires that

for every time-bounded action A, its corresponding timer should be reset to

0 whenever A is taken or it is not enabled at the next state and the value of

every active timer on the next state is less than or equal to its corresponding

upper-bound; and for the other cases condition 6b requires that the value of

each action timer on the next state should be greater than or equal to its

current value and less than or equal to its upper bound.

Theorem 6.7 can be used to show that the tpd of Figure 6.2 conforms to

the specification Loop in Figure 6.1. For example, we have:

• Init → x = 0 ∨ x > 0.

• x = 0 ∧ [Next]x → x ′ = 0 ∨ 〈Up 〉x ∧ x ′ > 0.

• x > 0 ∧ [Next]x → x ′ > 0 ∨ 〈Down 〉x ∧ x ′ = 0.

• Loop → RTBound(Down, x , t , 0, 3).

• t ≤ 3 ∧ t ≥ 0 ∧ t ′ = 0 ∧ true→ t ′ ≤ ∞.

• t ≤ 3 ∧ t ′ ≥ t ∧ t ′ ≤ 3→ t ′ ≤ 3.

6.4.2 Model checking TPDs

For the proof that all traces through a tpd satisfy some property F , we view

the tpd as a finite transition system that is amenable to model checking.

We propose two approaches for model checking tpds. First, if the quanti-

tative aspect of times doesn’t come into account, it is enough to model check

their untimed versions which are predicate diagrams. We have discussed this

issue in Section 5.4.2.

However, whenever we have to consider the quantitative aspect of times

for proving the properties we want to verify, we will use some existing real-

time system model-checker for verifying tpds. For example, we can use

Kronos, which is a software tool built with the aim of assisting designers of

real-time systems to verify whether their designs meet the specified require-

ments [110]. To do that, we first translate our diagrams into the input of

Kronos, which are timed automata (see Section 4.4), with some additional in-

formation. A timed automaton Γ is now given by a tuple (Q ,Q0,X , I,Λ,P).

Except P , all components of Γ is as defined in Definition 4.22. P is a function

associates with each location a set of atomic propositions.

Given a tpd T over P ,A,C and ΦC . The translation from T to some

timed-automata can be done by using this following construction.

98 Chapter 6

Construction 6.8 Let T = (N , I , δ, o, r , g ,R) be a tpd over P ,A,C and

ΦC . Let An be a set containing action names and κ : {1..|N |} → N be

an injective function which associates every node in N with some natural

number.

One can construct the corresponding timed automaton Γ = (Q ,Q0,X , I,
Λ,P) as follows:

• Q = {q1, . . . , q |N |}.

• Q0 = {q i : κ(i) ∈ I }.

• X = C .

• For every i ∈ 1..|N |, P(q i) = κ(i) ∧ r(κ(i)) and I(q i) = r(κ(i)).

• For every (n,m) ∈ δ and for every A ∈ A, there exists some tuple

(q i ,A, λ, θ, q j) in Λ such that κ(i) = n, κ(j) = m, λ = R(n,m) and

θ = g(n,m).

• For every n ∈ N , there exists some tuple of the form (q i , a, λ, θ, q i) in

Λ such that κ(i) = n, a = {tick , τ}, λ = R(n, n) and θ = g(n, n).

Theorem 6.9 Let T = (N , I , δ, o, r , g ,R) be a tpd over P ,A,C and ΦC as

defined and let Γ = (Q ,Q0,X , I,Λ,P) be the resulted automaton from Con-

struction 6.8 over T . For every run through T , ρ = (s0, n0,A0,∆0)(s1, n1,A1,

∆1) . . ., there exists a run of Γ

φ = (q0, ν0)
w0,ϕ0−→ (q1, ν1)

w1,ϕ1−→ . . .

such that κ(i) = n i and s i [[C]] = νi(X) holds for every i ∈ N.

Proof. Let ρ = (s0,n0,A0,∆0)(s1,n1,A1,∆1) . . . be a run through T . We define
two sequences w = w0w1 . . . and ϕ = ϕ0ϕ1 . . . such that w i = Ai and ϕi =
∆i+1 −∆i holds for every i ∈ N. Construction 6.8 ensures that we can construct
a run of Γ as stated in Theorem 6.9. �

6.5 An example: Fischer’s protocol

As illustration we take the Fischer’s mutual exclusion protocol which is a

well-known and well-studied by researchers in the context of real-time ver-

ification. We take the simplified version which only two processes in the

protocol.

Real time systems 99

module Fischer

Specification
Init ≡ x = 0 ∧ pc1 = 0 ∧ pc2 = 0

Try1 ≡ x = 0 ∧ pc1 = 0 ∧ pc′1 = 1 ∧ x ′ = x ∧ pc′2 = pc2

Set1 ≡ pc1 = 1 ∧ x ′ = 1 ∧ pc′1 = 2 ∧ pc′2 = pc2

Enter1 ≡ ∧ pc1 = 2 ∧ x ′ = x ∧ pc′2 = pc2

∧ ∨ x = 1 ∧ pc′1 = 3
∨ x 6= 1 ∧ pc′1 = 0

Exit1 ≡ pc1 = 3 ∧ pc′1 = 0 ∧ x ′ = 0 ∧ pc′2 = pc2

Try2 ≡ x = 0 ∧ pc2 = 0 ∧ pc′2 = 1 ∧ x ′ = x ∧ pc′1 = pc1

Set2 ≡ pc2 = 1 ∧ x ′ = 2 ∧ pc′2 = 2 ∧ pc′1 = pc1

Enter2 ≡ ∧ pc2 = 2 ∧ x ′ = x ∧ pc′1 = pc1

∧ ∨ x = 2 ∧ pc′2 = 3
∨ x 6= 2 ∧ pc′2 = 0

Exit2 ≡ pc2 = 3 ∧ pc′2 = 0 ∧ x ′ = 0 ∧ pc′1 = pc1

Next ≡ ∨ Try1 ∨ Set1 ∨ Enter1 ∨ Exit1

∨ Try2 ∨ Set2 ∨ Enter2 ∨ Exit2

v ≡ 〈x , pc1, pc2 〉
Fischer ≡ Init ∧2[Next]v ∧ RTNow(v)

∧ RTBound(Set1, v , s1, 0,D)
∧ RTBound(Enter1, v , t1,E ,∞)
∧ RTBound(Set2, v , s2, 0,D)
∧ RTBound(Enter2, v , t2,E ,∞)

Theorem
1. Fischer → 2¬(pc1 = 3 ∧ pc2 = 3)

Figure 6.3: Fischer’s protocol.

The system is composed by a set of 2 timed processes, P1 and P2 plus

a shared variable x . Each process Pi behaves as follow: after remaining idle

for some time, it checks whether the common resource is free (test x = 0)

and if so, before D time units sets x to i . Then it waits at least for E time

units and, making sure that x is still equal to i , enters the critical section. If

x is not equal to i (meaning that some other process has requested access)

then process i has to retry later.

The module contains the specification of the protocol and some properties

to be verified is given in Figure 6.3.

For every process Pi we associate a variable pci which represents its con-

trol state. The value of pci is equal to one of the integer 0, 1, 2 or 3. The

initial predicate Init asserts that pci is equal to 0 for each process i , so the

processes start with control at statement 0.

We need to verify that, with suitable conditions on D and E there will

never be more than one process in its critical section. This property can be

100 Chapter 6

expressed as a formula:

Fischer → 2¬(pc1 = 3 ∧ pc2 = 3). (6.9)

Figure 6.4 depicts the untimed version of TPD for Fischer’s protocol. We

will generate a suitable tpd of this predicate diagram. Since in the specifica-

tion Set1,Enter 1, Set2 and Enter 2 appear as time-bounded actions, we intu-

itively treat those actions as bounded-actions in the tpd. For each bounded-

action we set the corresponding clock, lower bound and upper bound as

follows:

• clk(Set1) = s1, `(Set1) = 0, µ(Set1) = D ,

• clk(Enter 1) = t1, `(Enter 1) = E , µ(Enter 1) =∞,

• clk(Set2) = s2, `(Set2) = 0, µ(Set2) = D , and

• clk(Enter 2) = t2, `(Enter 2) = E , µ(Enter 2) =∞.

Based on the information about the lower and upper bound of every timed-

bounded action, we can add the time-invariants and guards for the suitable

nodes. For example, at nodes where Set1 can be taken, we add time invariant

s1 ≤ D and on edges along where Set1 can be taken we put a guard s1 ≥ 0

and reset timer s1 :=0.

Figure 6.5 shows the tpd for the Fischer problem where clk(Set1) =

s1, clk(Set2) = s2, clk(Enter 1) = t1 and clk(Enter 2) = t2. Notice that due

to the limited space, for every edge (n,m) and for every timer c, we only

label (n,m) with c : =0 whenever c is active in n. The diagram represents an

approximation of the Fischer specification. It conforms to the specification,

because every behavior of the Fischer specification is a trace through the

diagram. We can use the conformance theorem, Theorem 6.7, for proving

this conformance.

However, it is too weak: it cannot be used to prove the mutual exclusion

property (Formula 6.9).

Our first try is to extend the diagram in Figure 6.5 by adding some more

time-constraints to every node. Suppose as additional time-invariants for

every node we take the initial values of every timer, i.e s1 = 0, s2 = 0, t1 = 0

and t2 = 0; and also two predicates asserting comparison between s1 and t2

and comparison between s2 and t1, i.e. s1 = t2 and s2 = t1. Starting with

the initial node we traverse the diagram in order to determine whether those

time-invariants still hold on each node or not. We do this by considering the

Real time systems 101

Exit1

Enter2

Exit2

Enter1

Try1
Try

2

Try1

Enter2

Set
2 Set1

Try
2

Enter1

Exit
2

Exit1

Exit1

Try1

Try1

Exit
2

Exit1

Exit1 Exit2

E
x
it

2

E
x
it

2

E
x
it

1

Exit2

Exit2 Exit1

Enter1Enter2

Ente
r1

S
e
t
2

S
e
t 1

Set1

Set2

Ente
r1

Set
1

Set
2

Enter
2

Set1

Ente
r1

Set
2

Enter
2

Enter1

Enter1

Enter2

Exit
2

Try
2

Set1 Set2

Enter
2

Enter2

pc1 = 0

pc1 = 1 pc1 = 0

pc1 = 1

pc1 = 1 pc1 = 2

pc1 = 0

pc1 = 0

pc1 = 1

pc1 = 3 pc1 = 2pc1 = 1

pc1 = 2

pc1 = 2

pc1 = 3

pc1 = 3

pc1 = 3 pc1 = 2

x = 0

pc1 = 0

pc2 = 2

pc1 = 1

pc1 = 0

pc1 = 3 pc1 = 3

pc1 = 2

pc1 = 3

pc1 = 2

pc1 = 3pc1 = 1

x = 0

pc2 = 0

x = 0

pc2 = 0

x = 1

pc2 = 0

x = 1

pc2 = 0

x = 1

pc2 = 2

x = 1

pc2 = 2

x = 2

pc2 = 2

x = 0

pc2 = 1

x = 0

pc2 = 1

x = 0

pc2 = 2

x = 1

pc2 = 1

x = 2

pc2 = 3

x = 1

pc2 = 1

x = 2

pc2 = 3

x = 2

pc2 = 2

x = 2

pc2 = 3

x = 2

pc2 = 2

x = 1

pc2 = 3

x = 0

pc2 = 0

x = 0

pc2 = 1

x = 0

pc2 = 0

x = 2

pc2 = 3

x = 1

pc2 = 3

x = 0

pc2 = 2

x = 0

pc2 = 3

x = 0

pc2 = 3

x = 0

pc2 = 1

E
x
it

1

Figure 6.4: Predicate diagram for Fischer’s protocol.

102 Chapter 6

x = 0

pc2 = 0

pc1 = 1

x = 0

pc1 = 0

x = 2

pc1 = 0

pc2 = 3pc2 = 0

x = 1

pc1 = 3

Exit2Exit1

x = 1

pc2 = 0

pc1 = 2 Try2Try1 Set2

s2 := 0

Enter2

t2 ≥ E

Set1

s1 := 0

Enter1

pc2 = 1

Enter2

t2 ≥ E

t2 ≤ ∞

pc2 = 2

pc1 = 3

x = 1 x = 1

pc1 = 2

pc2 = 2

t1 ≤ ∞

Enter1

t1 ≥ E
t1 := 0

t2 := 0 t2 := 0

t2 ≥ E

Enter2

x = 2

pc1 = 1

pc2 = 2

s1 ≤ D

Set1

t2 ≤ ∞

s1 ≥ 0

s1 := 0

Enter2

t2 ≥ E

t2 := 0

x = 2

pc1 = 1

pc2 = 3

s1 ≤ D

E
x

it
2

Set2

s2 ≥ 0

s2 := 0

x = 0

pc1 = 1

pc2 = 1

s1 ≤ D

Set1

s1 ≥ 0

s1 := 0

x = 1

pc1 = 2

pc2 = 1

s2 ≤ D

Set2

s2 ≥ 0

s2 := 0

pc1 = 0

pc2 = 2

x = 2

Enter1

t1 ≥ E

t1 := 0

x = 2
pc1 = 2

pc2 = 2

t1 ≤ ∞
t2 ≤ ∞

Enter2

t2 ≥ E

t2 := 0

Enter1

t1 := 0

pc1 = 2
x = 2

pc2 = 3

t1 ≤ ∞

Enter1

t1 ≥ E

t1 := 0

pc1 = 3

pc2 = 1

x = 1

s2 ≤ D

E
x

it
1

t1≥E

t1 :=0

s1≥0
t1≤∞ s1≤D s2≤D

s2≥0
t2≤∞ t2 :=0

t1≥E

t2 ≤ ∞
s2 ≤ D

t1 ≤ ∞

T
ry

1
T
ry

2

S
e
t 1

s 1
≥

0
s 1

:=
0

x = 0

pc1 = 1

pc2 = 2

x = 0

pc2 = 0

pc1 = 0

pc1 = 0

x = 0

s1 ≤ D t2 ≤ ∞

pc2 = 2

x = 2

pc1 = 3

pc2 = 2

t2 ≤ ∞

Exit1Try1

E
x
it
2

S
e
t
2

s
2

≥
0

s
2

:=
0

pc1 = 2

x = 1

pc2 = 3

t1 ≤ ∞

Exit2

x = 0

pc1 = 2

pc2 = 0

t1 ≤ ∞

Try2

x = 0

pc1 = 2

pc2 = 1

s2 ≤ D
t1 ≤ ∞

Exit2

pc1 = 1

x = 0

pc2 = 3

s1 ≤ D

Try1 pc1 = 0

x = 0

pc2 = 3

pc1 = 3

x = 1

pc2 = 3

Exit1

pc1 = 3

x = 2

pc2 = 3

pc1 = 3

x = 0

pc2 = 0

Exit2 Try2 pc1 = 3

x = 0

pc2 = 1

s2 ≤ D

E
x
it

1

t2 ≤ ∞

Exit2

Exit1

Exit1

s2
:=

0

s2
≥

0

Set2

s
1 ≥

0

s
1 :=

0

t
2 :=

0
t1

:=
0

t1
≥

E

E
nte

r1

t
2 ≥

E

Exit2
Set1

t1 ≥ 0 t1 := 0

Exit1

Set2

t2 ≥ 0 t2 := 0

E
n

t
e
r
1

t
1
≥

E
t
1

:
=

0

E
n

t
e
r
2

t
2
≥

E
t
2

:
=

0

Enter1t1 ≥ Et1 := 0Enter2t2 ≥ Et2 := 0

Set
1

E
nter

2

Figure 6.5: First tpd for Fischer’s protocol.

Real time systems 103

bounded-actions that can be taken on every node. For example, if Set1 is

enabled then s1 = 0 is changed to s1 ≥ 0. The predicates s1 = t2 and s2 = t1

might be changed accordingly.

The result is shown in Figure 6.6 (the numbering on some nodes will be

used later). The resulted diagram, again, represents an approximation of the

Fischer specification. However, we still cannot prove the mutual exclusion

property.

We can strengthen the second diagram, by using assumptions on D and

E . We consider two cases: D < E and D ≥ E . Based on these assumptions,

we refine our diagram in Figure 6.6 by eliminating transitions that do not

satisfy those conditions. The elimination process can be done using Simplify

algorithm in Figure 6.7. The algorithm works in DFS style. For every initial

node n, we run the algorithm with tpd T , some node n and some set of

edge δ1 as inputs. Starting with initial nodes, for every edge leading from

this node, the algorithm checks whether it satisfies the required condition or

not. If so, then the edge is stored and the algorithm continues to check the

next edges. For example, consider node 1 and node 2 in Figure 6.6. The

corresponding edge does not satisfy either condition 6a, since it is never the

case that s1 ≥ t2 ∧ s1 ≤ D ∧ t2 ≥ E is true while D < E , or condition 6b,

since in this case node 1 and node 2 are different nodes. The situation is

the similar with node 3 and node 4. Running this algorithm over our second

diagram and assumption D < E , we have the third diagram shown in Figure

6.8.

For the assumption D ≥ E , the resulted diagram has the same structure

with the one in Figure 6.6. As conclusion, the protocol satisfies mutual

exclusion property if D < E .

Since we don’t consider the quantitative aspect of time, we may work

with the untimed version of tpd shown in Figure 6.8 and then model-check

the resulted diagram as explained in Section 5.4.2.

6.6 Discussions and related work

We have presented a method for the verification of real-time systems. A

real-time program can be written as the conjunction of its untimed version,

expressed in a standard way as a TLA* formula, and its timing assumptions,

expressed in terms of a few standard parameterized formulas. The separa-

tion between specification of untiming and timing properties makes real-time

specification easier to write and understand.

We have defined a variant of predicate diagrams presented in the previous

104 Chapter 6

x = 0

pc2 = 0

pc1 = 1

x = 0

pc1 = 0

pc2 = 1

x = 2

pc1 = 1

pc2 = 2

s1 ≤ D
t2 ≤ ∞

x = 0

pc1 = 1

pc2 = 2

pc1 = 2

x = 2

x = 1

pc2 = 1

s2 ≤ D
t1 ≤ ∞

s2 ≤ D t2 ≤ ∞

t1 ≤ ∞
t2 ≤ ∞

pc1 = 2

x = 2

x = 2

pc2 = 3

pc1 = 0

pc2 = 3

t1 ≤ ∞

x = 1

pc1 = 2

pc2 = 2

pc2 = 0

x = 1

pc1 = 3

t1 ≤ ∞
t2 ≤ ∞

t2 ≤ ∞

x = 1

pc1 = 3

pc2 = 2

s1 ≤ D
s2 ≤ D

x = 0

pc1 = 1

pc2 = 1

s1 ≤ D s2 ≤ D

T
ry

1

T
ry

2

pc1 = 1

pc2 = 3

t1 ≤ ∞t2 ≤ ∞

x = 1

pc1 = 3

pc2 = 1

s1 ≤ Dt1 ≤ ∞

t1 ≥ E

Enter1

t1 := 0

Enter2 Enter2

t2 := 0

s1 ≥ 0

Set1

s1 := 0

s2 ≥ 0

Set2

s2 := 0

Set1

s1 ≥ 0

s1 := 0

Set2

s2 ≥ 0

s2 := 0

Enter2

t2 ≥ E

t2 := 0

Enter1
t1 ≥ E
t1 := 0

Enter1
t1 ≥ E
t1 := 0

Try2Try1

t1 ≥ E

t1 := 0

Enter1 Enter2

t2 ≥ E

t2 := 0

Enter2
t2 ≥ E
t2 := 0

E
x

it
2

E
x

it
1

Exit2 Exit1Exit1Exit2

Exit1Try1 Exit2 Try2

Try2Exit2Exit1Try1

Enter2 t2 ≥ E t2 := 0 Enter1 t1 ≥ E t1 := 0

s
1
≥

0

s
1

:=

0

s 2
:=

0

s 2
≥

0

S
et

2

S
e
t 1

s 1
≥

0
s 1

:=
0

E
x
it

1

S
e
t
2

s
2
≥

0
s
2
:=

0

E
x
it
2

E
n

t
e
r
1

t
1
≥

E
t
1

:
=

0

Exit2Exit1

E
n

t
e
r
2

t
2
≥

E
t
2

:
=

0

Set1

t1 ≥ 0 t1 := 0

Exit1
Exit2

Set2
t2 ≥ 0 t2 := 0

Exit1

t
2

:=

0

t
2
≥

E

t 1
:=

0

t 1
≥

E

E
n
te

r 1
s1 ≤ D
t2 ≤ ∞

s1 ≤ D s2 ≤ D

s2 ≤ D
t1 ≤ ∞

t2 := 0
t2 ≥ E t2 ≥ E

t1 ≥ E
t1 := 0

Enter1

t2 ≤ ∞ t1 ≤ ∞

x = 0

pc1 = 2

pc2 = 1

1

2

3

4

s1 := 0

s1 ≥ 0

Set1

s2 := 0

s2 ≥ 0

Set2

x = 1

pc2 = 0

pc1 = 2

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 = t1
s1 ≥ t2
t2 = 0

t1 = 0

s2 = 0

s1 ≥ 0

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 0

pc1 = 0

x = 0

s2 ≥ t1
s1 = t2
t2 = 0

t1 = 0

s2 ≥ 0

s1 = 0

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 2

pc1 = 0

x = 2

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 2

pc1 = 2

x = 2

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 ≤ t2
t2 ≥ 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 = t1
s1 ≥ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 ≥ 0

s2 ≥ t1
s1 ≥ t2
t2 = 0

t1 = 0

s2 ≥ 0

s1 ≥ 0

s2 ≥ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 ≥ 0

s1 = 0

s2 ≤ t1
s1 ≤ t2
t2 ≥ 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 = t1
s1 ≥ t2
t2 = 0

t1 = 0

s2 = 0

s1 ≥ 0

s2 ≥ t1
s1 = t2
t2 = 0

t1 = 0

s2 ≥ 0

s1 = 0

pc2 = 2 pc2 = 2

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 ≥ 0

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 3

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

pc2 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 ≥ 0

s1 = 0

pc2 = 3

pc1 = 1

x = 0

pc2 = 3

pc1 = 0

x = 0

pc2 = 3

pc1 = 3

x = 1

pc2 = 3

pc1 = 3

x = 2

pc2 = 0

pc1 = 3

x = 0

pc1 = 2

x = 1

pc1 = 3

x = 2

pc1 = 0

x = 0

pc1 = 2

x = 0

pc2 = 1

pc1 = 3

x = 0

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s2 = t1
s1 ≥ t2
t2 = 0

t1 = 0

s2 = 0

s1 ≥ 0

S
et
1

E
n
ter

2

Figure 6.6: Second tpd for Fischer’s protocol.

Real time systems 105

algorithm Simplify

if n /∈ visited then

visited = visited ∪ {n}
for every (n,m) ∈ δ

if either condition 6a or 6b in Theorem 6.7 is satisfied then

δ1 ≡ δ1 ∪ {(n,m)}
Simplify(T ,m, δ1, visited)

endif

endfor

endif

Figure 6.7: Simplify algorithm.

chapter, which we call timed predicate diagrams or tpds. Basically, tpds

are predicate diagrams which dedicated to handle real-time systems. The

properties of timed predicate diagrams, except the ones that related to real-

time condition, are inherited from predicate diagrams.

The verification process of real-time systems using tpds is quite similar to

the one of discrete systems. Like predicate diagrams, tpds also integrate the

deductive and algorithmic verification techniques. For proving that a tpd

conforms to a real-time specification, we can use Theorem 6.7. There are

two possible ways in model-checking tpds. If the quantitative aspect of time

comes into account then we can use some existing real-time systems model-

checkers, such as KRONOS [110] or UPPAAL [15], for model-checking tpds.

To do that we need to translate our diagram into the input languages of the

model-checkers, which are timed automata. Since the structure of tpds are

quite similar to timed automata, the translation can be done straightforward

using the setting described in section 6.4.2. If we don’t consider the quanti-

tative aspect of time, we may work with the untimed version of tpd which

are ordinary predicate diagrams and use the standard model-checker such as

SPIN to model-check the diagrams. We have illustrated the latter case when

we proved the mutual exclusion property of the Fischer’s protocol.

Many models for reasoning real-time systems have been proposed. The

approach to real-time presented in Manna et al. in [55] and [77] is based on

the computational model of Timed Transition Systems (TTS) in which time

itself is not explicitly represented but it is reflected in a time stamp affixed

to each state in a computation of a TTS. In [59], Kesten et al. introduced a

computation model for real-time systems called Clocked Transition Systems

106 Chapter 6

x = 0

pc2 = 0

pc1 = 1

x = 0

pc1 = 0

pc2 = 1

x = 2

pc1 = 1

pc2 = 2

s1 ≤ D
t2 ≤ ∞

x = 0

pc1 = 1

pc2 = 2

pc1 = 2

x = 1

pc2 = 1

s2 ≤ D
t1 ≤ ∞

s2 ≤ D t2 ≤ ∞

t1 ≤ ∞
t2 ≤ ∞

pc1 = 2

x = 2

x = 2

pc2 = 3

pc1 = 0

pc2 = 3

t1 ≤ ∞

x = 1

pc1 = 2

pc2 = 2

pc2 = 0

x = 1

pc1 = 3

t1 ≤ ∞
t2 ≤ ∞

t2 ≤ ∞

x = 1

pc1 = 3

pc2 = 2

s1 ≤ D
s2 ≤ D

x = 0

pc1 = 1

pc2 = 1

T
ry

1

T
ry

2

s1 ≤ D

t1 ≥ E

Enter1

t1 := 0

Enter2 Enter2

t2 := 0

s1 ≥ 0

Set1

s1 := 0

s2 ≥ 0

Set2

s2 := 0

Set1

s1 ≥ 0

s1 := 0

Set2

s2 ≥ 0

s2 := 0

Enter2

t2 ≥ E

t2 := 0

Enter1
t1 ≥ E
t1 := 0

Enter1
t1 ≥ E
t1 := 0

Try2Try1

t1 ≥ E

t1 := 0

Enter1 Enter2

t2 ≥ E

t2 := 0

Try1 Try2

Enter2 t2 ≥ E t2 := 0 Enter1 t1 ≥ E t1 := 0S
e
t 1

s 1
≥

0
s 1

:=
0

E
x
it

1

S
e
t
2

s
2
≥

0
s
2
:=

0

E
x
it
2

E
n

t
e
r
1

t
1
≥

E
t
1

:
=

0

Exit2Exit1

E
n

t
e
r
2

t
2
≥

E
t
2

:
=

0

s1 ≤ D
t2 ≤ ∞

s2 ≤ D
t1 ≤ ∞

t2 := 0
t2 ≥ E t2 ≥ E

t2 ≤ ∞ t1 ≤ ∞

x = 0

pc1 = 2

pc2 = 1

1 3

s1 := 0

s1 ≥ 0

Set1

s2 := 0

s2 ≥ 0

Set2

x = 1

pc2 = 0

pc1 = 2

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 = t1
s1 ≥ t2
t2 = 0

t1 = 0

s2 = 0

s1 ≥ 0

s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 0

pc1 = 0

x = 0

s2 ≥ t1
s1 = t2
t2 = 0

t1 = 0

s2 ≥ 0

s1 = 0

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 2

pc1 = 0

x = 2

s2 = t1
s1 = t2
t2 = 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 2

pc1 = 2

x = 2

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 ≤ t2
t2 ≥ 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 = t1
s1 ≥ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 ≥ 0

s2 ≥ t1
s1 ≥ t2
t2 = 0

t1 = 0

s2 ≥ 0

s1 ≥ 0

s2 ≥ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 ≥ 0

s1 = 0

s2 ≤ t1
s1 ≤ t2
t2 ≥ 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

pc2 = 2

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 ≥ 0

s2 = t1
s1 ≤ t2
t2 ≥ 0

t1 = 0

s2 = 0

s1 = 0

pc2 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 = 0

s1 = 0

s2 ≤ t1
s1 = t2
t2 = 0

t1 ≥ 0

s2 ≥ 0

s1 = 0

pc1 = 0

x = 0

pc1 = 2

x = 0

s2 = t1s2 ≤ t1
t1 ≤ ∞

Figure 6.8: tpd for Fischer’s protocol with assumption D < E.

Real time systems 107

(CTS), which is a development of TTS. This model represents time by a set

of system variables called clocks (timers) which increase uniformly whenever

time progresses, but can be set to arbitrary values by system (program)

transitions.

Modelling timer/clocks as just another kind of system variables has also

been proposed by Abadi & Lamport, which is followed in this work. Such

models bring two benefits: it leads to a more natural style of specification,

instead of introducing special new constructs (e.g. bounded temporal opera-

tors proposed in metric temporal logic (MTL) [64, 63, 62] or the age function

proposed in [77]), and we can reuse many of the methods and tools developed

for verifying untimed reactive systems.

Alur&Dill in [9] proposed an automata based approach for reasoning

real-time systems. They introduced timed automata, which are an extension

of ω-automata (see Chapter 3). Timed automata are automata equipped with

a set of variables, called clocks, that measure the time elapsed on locations.

We refer the reader to [10, 89] and the survey in [11], for additional logics,

models and approaches to the verification of real-time systems.

The use of diagrams in verification of real-time systems can be found,

for example, in [59]. In their approach, they use a special rule for proving

a class of property, such as invariant and response properties. Every rule

is associated with verification diagram. In her thesis, Sipma presented two

specialized classes of diagrams for real-time systems: nonZenoness and recep-

tiveness diagrams. NonZenoness diagrams represent a proof that a real-time

is time-divergent, that is, all behavior prefixes of the system can be extended

into behaviors in which time grows beyond any bound; whereas receptive-

ness diagrams prove a related property of real-time systems that implies time

divergence and is preserved by parallel composition.

The generation of the tpds for the Fischer’s problem is done manu-

ally. In Chapter 8, we will study some techniques for generating diagrams,

or invariants, (semi-)automatically. Bouajjanni et al., see [104], have suc-

cessfully generated the invariants for the Fischer’s protocol automatically

using TReX, a tool for reachability analysis of complex systems.

108 Chapter 6

Chapter 7

Parameterized systems

7.1 Overview

Parameterized systems have become a very important subject of research in

the area of computer-aided verification. A typical parameterized system con-

sists of a collection of an arbitrary but finite number of identical processes

interacting via synchronous or asynchronous communication. Many inter-

esting systems are of this form, for example, mutual exclusion algorithms

for an arbitrary number of processes wanting to use a common resource.

Many distributed programs, in particular those that control communication

and synchronization of networks, also have a parallel composition of many

identical processes as their body.

A challenging problem is to provide a method for the uniform verification

of such programs, i.e. prove by a single proof that the system is correct for

any value of the parameter. The key to such a uniform treatment is param-

eterization, i.e. presenting a single syntactic object that actually represents

a family of objects.

The ability to conduct a uniform verification of a parameterized program

is one of the striking advantages of the deductive method for temporal verifi-

cation over algorithmic techniques such as model-checking techniques. Let n

denote an arbitrary but finite number of identical processes. Model-checking

can be used to verify the desired properties of the systems for specific values

of n, such as n = 3, 4, 5. Usually, the model checker’s memory capacity is

exceeded for values of n smaller than 100 [80]. Furthermore, in the general

case, nothing can be concluded about the property holding for any value of

n from the fact that it holds for some finite set of values. In comparison, the

deductive method establishes in one fell swoop the validity of the property

for any value of n [80, 45].

109

110 Chapter 7

Predicate diagrams integrate the deductive and algorithmic verification

techniques. We have successfully applied our approach on the discrete and

real-time systems. The using of predicate diagrams in the verification of

parameterized systems will be studied in this chapter. In this work, we

restrict on the parameterized systems which are interleaving and consist of

finitely, but arbitrarily, discrete components. Two classes of properties will

be considered, namely the properties related to the whole processes and the

ones related to a single process in the systems. The latter class is sometimes

called the universal property. For example, given a parameterized system

which consists of n processes and some property P , the universal properties

are expressed as formulas of the form ∀ k ∈ 1..n : P(k).

We start this chapter by investigating the specification of parameterized

systems. Then in the next Section we present the Tickets protocol taken from

[18]. In the following section, Section 7.4, we explain the verification proper-

ties of the Tickets protocol that are related to the whole processes using the

ordinary predicate diagrams. In Section 7.5 we give the formal definition of

parameterized predicate diagrams and verify the property of a single process

in the Tickets protocol using parameterized predicate diagrams. In the end

of this chapter we discuss our approach and compare to some other work.

7.2 Specification

We now investigate how to specify these systems in our modeling language.

In the whole discussion, M denotes a finite and non-empty set of processes

running in the system being considered.

Recall that the formula for expressing a specification is a formula of the

form:

Spec ≡ Init ∧2[Next]v ∧ L.

As mentioned before, in the context of parameterized systems, the systems

consist of many identical processes, precisely, they consist of the same transi-

tions and the same liveness properties. Thus, using parameterized notation,

this class of systems can be expressed as a formula of the form:

parSpec ≡ ∀k ∈M : Init(k) ∧2[Next(k)]v[k] ∧ L(k). (7.1)

In this work we only consider the parameterized discrete systems where

the liveness conditions are expressed as fairness properties. Furthermore,

since we also restrict to the interleaving systems, which are systems in which

Parameterized systems 111

each step can be attributed to exactly one process, Formula 7.1 can be ex-

pressed as follows:

parSpec ≡ Init ∧2[∃k ∈M : Next(k)]v ∧ ∀k ∈M : Lf (k) (7.2)

where Init represents the global initial condition of the system and v is the

tuple formed by all v [k]. From now on we will use Formula 7.2 as the standard

specification form for parameterized systems.

7.3 Tickets protocol: a case study

The Tickets protocol is a mutual exclusion protocol designed for multi-client

systems operating on a shared memory. In order to access the critical section,

every client executes the protocol based on the first-in first-served access

policy. The protocol works as follows. Initially all clients are thinking, while

t and s store the same initial value. When requesting the access to the critical

section, a client stores the value of the current ticket t in its local variable a.

A new ticket is then emitted by incrementing t . Clients wait for their turn

until the value of their local variable a is equal to the value of s . After the

elaboration inside the critical section, a process releases it and the current

turn is updated by incrementing s . During the execution the global state of

the protocol consists of the internal state (current value of the local variable)

of each process together with the current value of s and t .

Our objective is to prove that the protocol satisfies the following proper-

ties:

1. Mutual exclusion. Every time there is only maximal one process in its

critical section.

2. Communal accessibility. If there exist some processes wishing to enter

their critical sections then eventually there exist some processes that

are in their critical sections.

3. Individual accessibility. Every time a process requests to enter its crit-

ical section, it will be eventually allowed to enter its critical section.

We can categorize those properties into two classes of properties, namely

properties that are related to the whole processes and to a single process

(universal properties). Mutual exclusion and communal accessibility are in

the first class whereas individual accessibility is in the second class.

The specification for the Tickets protocol is given in Figure 7.1.

112 Chapter 7

module Tickets

Specification
Init ≡ ∀ k ∈ M : pc[k] = 1 ∧ a[k] = 0 ∧ s = 1 ∧ t = 1

Request(k) ≡ ∧ pc[k] = 1 ∧ pc′ = [pc except !k = 2]
∧ a ′ = [a except !k = t] ∧ t ′ = t + 1 ∧ s ′ = s

Grant(k) ≡ ∧ pc[k] = 2 ∧ a[k] = s ∧ pc′ = [pc except !k = 3]
∧ s ′ = s ∧ t ′ = t ∧ a ′ = a

Release(k) ≡ ∧ pc[k] = 3 ∧ pc′ = [pc except !k = 1] ∧ s ′ = s + 1
∧ a ′ = a ∧ t ′ = t

v ≡ 〈pc, a, s, t 〉
Next(k) ≡ Request(k) ∨Grant(k) ∨ Release(k)

L(k) ≡ ∧ WFv (Grant(k))
∧ WFv (Release(k))

Tickets ≡ Init ∧2[∃ k ∈ M : Next(k)]v ∧ ∀ k ∈ M : L(k)

Theorem
1. Tickets → 2(∀ i , j ∈ M : pc[i] = 3 ∧ pc[j] = 3→ i = j)
2. Tickets → 2(∃ k ∈ M : pc[k] = 2→ 3(∃ k ∈ M : pc[k] = 3))
3. Tickets → ∀ k ∈ M : 2(pc[k] = 2→ 3pc[k] = 3)

Figure 7.1: Tickets protocol for n ≥ 1 processes.

7.4 Verification using predicate diagrams

In this section we will study the use of predicate diagrams in the verification

of parameterized systems. Recalling the definition of predicate diagrams,

Definition 5.2, predicate diagrams are defined relatively to two sets, namely

a set of state predicates P and a set of the (names of) actions A. In the

context of parameterized systems we can say that A now contains the (names

of) the parameterized actions.

A run of a predicate diagram is now an ω-sequence of ρ = (s0, n0,A0)(s1,

n1,A1) . . . such that for every i ∈N, s i is a state, n i is a node and Ai ∈{τ}∪A
(where Ai is a parameterized action) such that all the conditions in Definition

5.3 are satisfied.

It is already explained in Chapter 5 that verification process using pred-

icate diagrams is done in two steps. The first step is to find a predicate

diagram that can be proven to be the correct representation of the system to

be verified, i.e. the diagram conforms to the system specification. For prov-

ing whether a diagram conforms to a specification or not, the conformance

theorem, Theorem 5.4 is used. With the current setting, i.e. the using of

parameterized actions, some modifications should be done over the Theorem

5.4. In particular, the conditions related to the fairness conditions should be

Parameterized systems 113

treated slightly differently from non-parameterized ones.

We need to address one important issue that will be used later, which

is the issue about fairness. Note that in the specification the fairness con-

dition is represented as a conjunction of formulas of the forms ∀ k ∈ M :

WFv(A(k)) and/or ∀ k ∈ M : SFv(A(k)), i.e. for every process k in M and

for some parameterized action A(k), we associate weak and strong fairness,

respectively, with A(k). Let’s turn to the definition of predicate diagrams,

in particular the definition of ζ. In the context of parameterized systems,

ζ : A → {NF,WF, SF} is now a mapping that associates a fairness condition

with every parameterized action A(k) in A. For example, for some parame-

terized action A(k), if ζ(A(k)) then we mean that WFv(∃ k ∈ M : A(k)).

We say that a predicate diagram G conforms to a parameterized program

parSpec if every behavior that satisfies parSpec is a trace through G .

Theorem 7.1 Let G = (N , I , δ, o, ζ) be a predicate diagram over P and A
and let parSpec ≡ Init ∧ 2[∃ k ∈ M : Next(k)]v ∧ ∀ k ∈ M : Lf (k) be a

parameterized system. If all the following conditions hold then G conforms

to parSpec:

1. |= Init→
∨
n∈I

n.

2. |≈ n ∧ [∃ k ∈M : Next(k)]v → n′ ∨
∨

(m,A(k)):(n,m)∈δA(k)

〈∃ k ∈M : A(k)〉v ∧m′.

3. For all n,m ∈ N and all (t ,≺) ∈ o(n,m)

(a) |≈ n ∧m′ ∧
∨

A(k):(n,m)∈δA(k)

〈∃ k ∈M : A(k)〉v → t′ ≺ t.

(b) |≈ n ∧ [∃k ∈ M : Next(k)]v ∧ n ′ → t ′ � t .

4. For every action A(k) ∈ A such that ζ(A(k)) 6= NF

(a) If ζ(A(k))=WF then |= parSpec→WFv(∃ k ∈ M : A(k)).

(b) If ζ(A(k)) = SF then |= parSpec → SFv(∃ k ∈ M : A(k)).

(c) |≈ n → enabled 〈∃ k ∈ M : A(k)〉v holds whenever n ∈ En(A(k)).

(d) |≈ n ∧〈∃ k ∈ M : A(k)〉v → ¬m ′ holds for all n,m ∈ N such that

(n,m) 6∈ δA(k).

114 Chapter 7

Proof. (sketch) This theorem is a direct consequence of Theorem 5.4. Notice that
∃k ∈ M : A1(k) ∨ . . . ∨ An(k) is equivalent to (∃k ∈ M : A1(k)) ∨ . . . ∨ (∃k ∈
M : An(k)). Thus, we can use the proof for Theorem 5.4 which is given in [26]
and [83] as reference in order to prove Theorem 7.1. �

Figure 7.2 depicts a suitable predicate diagram for the Tickets protocol

where cs represents a set of processes whose pc is equal to 3, i.e. pc1 = {k ∈
M : pc[k] = 1} and cs = {k ∈ M : pc[k] = 3}.

∀k ∈ M : pc[k] ∈ {1, 2, 3}

∀k ∈ M : pc[k] ∈ {1, 2}

∀k ∈ M : pc[k] = 1

|cs| = 0

∃k ∈ M : pc[k] = 2

∃k ∈ M : pc[k] = 3

|cs| = 0

|cs| = 1

Release(k)

R
e
le

a
s
e
(k

) Request(k)

Grant(k)

Figure 7.2: Predicate diagram for the Tickets protocol for n ≥ 1 processes.

Although there exists a self-loop on the middle node, we don’t need order-

ing annotations for avoiding an infinite loop. Insteads we rely on the fairness

assumption for the Grant(k) action to prove the communal accessibily prop-

erty.

Using theorem 7.1 we can prove that this diagram conforms to the Tickets

specification. For example, we have:

• Init → ∀ k ∈ M : pc[k] = 1 ∧ |cs| = 0.

• ∀k ∈ M : pc[k] = 1 ∧ |cs| = 0 ∧ [∃ k ∈ M : Next(k)]v −→
∨ ∀k ∈ M : pc[k]′ = 1 ∧ |cs ′| = 0

∨ ∧ 〈∃ k ∈ M : Request(k)〉v
∧ ∀k ∈ M : pc[k]′ ∈ {1, 2} ∧ ∃k ∈ M : pc[k]′ = 2 ∧ |cs ′| = 0.

• ∧ ∀k ∈ M : pc[k] ∈ {1, 2} ∧ ∃ k ∈ M : pc[k] = 2 ∧ |cs| = 0

∧ ∀k ∈ M : pc[k]′ ∈ {1, 2} ∧ ∃ k ∈ M : pc[k]′ = 2 ∧ |cs ′| = 0

∧ 〈∃ k ∈ M : Request(k)〉v

Parameterized systems 115

−→ |pc ′1| < |pc1|.

Predicate diagram in Figure 7.2 can be used to prove the mutual exclusion

and communal accessibility properties of the Tickets protocol. We can model-

check the diagram, for example with SPIN, as explained in [26, 83].

7.5 Parameterized predicate diagrams

So far, we have successfully applied predicate diagrams in proving the mu-

tual exclusion and communal accessibility properties of the Tickets protocol.

Unfortunately, this approach cannot be used to prove the individual accessi-

bility of that protocol. In general, this approach suffers from the limitation

that it cannot be used for the verification of universal properties.

In proving universal properties we have to find a way that enables us to

keep track the behaviors of some particular process. The idea is to view the

systems as collections of two components, which are a particular process and

the collection of the rest of the processes.

Given a parameterized system specification parSpec and a property P ,

our goal is to prove the validity of parSpec → ∀ k ∈ M : P(k). Let i ∈ M be

some process. We reduce the proof to the proof of parSpec ∧ i ∈ M → P(i)1.

If the proof succeeds then, since we apply the standard quantifier introduction

rule of first-order logic, we can conclude that the property holds over each

process in the system, i.e. ∀ k ∈ M : P(k) is valid.

For the sake of the presentation, in the following we will denote by A(i)

for some action of process i and A(k) for formula ∃ k ∈ M \ {i} : A(k) for

some action of any process other than i .

Definition 7.2 (quantified-actions) For a set of parameterized actions A,

we denote by Φ(A), the set of quantified-actions which are formulas of the

form A(i) or A(k) for A(k) some parameterized action in A.

We now define a variant of predicate diagrams that can be used for ver-

ifying universal properties of parameterized systems. We call this variant

parameterized predicate diagrams, or ppds for short.

Definition 7.3 (ppd) Given a set of state predicates P, a set of parameter-

ized actions A and the set of quantified-actions over parameterized actions

in A, Φ(A), ppd over P ,A, and Φ(A), G, is given by a tuple (N , I , δ, o, ζ)

where

1We call such method Skolemization.

116 Chapter 7

• N , I and o as defined in Definition 5.1.

• a family δ = (δB)B∈Φ(A) of relations δB ⊆ N × N ; we also denote by δ

the union of the relations δB , for B ∈ Φ(A) and write δ= to denote the

reflexive closure of the union of these relations and

• a mapping ζ : A → {NF,WF, SF} that associates a fairness condition

with every parameterized action in A; the possible values represent no

fairness, weak fairness, and strong fairness.

We say that the quantified-action B ∈ Φ(A) can be taken at node n ∈ N iff

(n,m) ∈ δB holds for some m ∈ N , and denote by En(B) ⊆ N the set of

nodes where B can be taken.

Instead of using parameterized actions, we now use quantified-actions as

edge labels. On the contrary, we still associate the fairness annotations with

parameterized actions and not with quantified-actions for ensuring that for

some parameterized action A(k), the quantified actions of A(k) have the

same fairness conditions.

Definition 7.4 Let G = (N , I , δ, o, ζ) be a ppd over P ,A and Φ(A). A run

of G is an ω-sequence ρ = (s0, n0,A0) (s1, n1,A1) . . . of triples where s i is a

state, n i ∈ N is a node and Ai ∈ Φ(A) ∪ {τ} is an action such that all of

the following conditions hold:

1. n0 ∈ I is an initial node.

2. s i [[n i]] holds for all i ∈ N.

3. For all i ∈N either Ai =τ and n i =n i+1 or Ai ∈Φ(A) and (n i , n i+1)∈
δAi .

4. If Ai ∈ Φ(A) and (t ,≺) ∈ o(n i , n i+1), then s i+1[[t]] ≺ s i [[t]].

5. If Ai = τ then s i+1[[t]] � s i [[t]] holds whenever (t ,≺) ∈ o(n i ,m) for

some m ∈ N .

6. For every quantified-action B ∈ Φ(A) of parameterized action A(k) ∈
A such that ζ(A(k)) = WF there are infinitely many i ∈ N such that

either Ai = B or ni /∈ En(B).

7. For every action B ∈ Φ(A) of parameterized action A(k) ∈ A such

that ζ(A(k)) = SF, either Ai = B holds for infinitely many i ∈ N or

ni ∈ En(B) holds for only finitely many i ∈ N.

Parameterized systems 117

We write runs(G) to denote the set of runs of G.

The set tr(G) traces through G consists of all behaviors σ = s0s1 . . . such

that there exists a run ρ = (s0, n0,A0)(s1, n1,A1) . . . of G based on the states

in σ.

We say that a ppd G conforms to a parameterized system parSpec if every

behavior that satisfies parSpec is a trace through G.

Theorem 7.5 Let G = (N , I , δ, o, ζ) be a ppd P ,A and Φ(A) as defined

and let parSpec ≡ Init ∧ 2[∃ k ∈ M : Next(k)]v ∧ ∀ k ∈ M : Lf (k) be a

parameterized system. If all the following conditions hold then G conforms

to parSpec:

1. |= Init→
∨
n∈I

n.

2. |≈ n ∧ [∃ k ∈M : Next(k)]v → n′ ∨
∨

(m,B):(n,m)∈δB

〈B〉v ∧m′

3. For all n,m ∈ N and all (t ,≺) ∈ o(n,m)

(a) |≈ n ∧m′ ∧
∨

B:(n,m)∈δB

〈B〉v → t′ ≺ t

(b) |≈ n ∧ [∃k ∈ M : Next(k)]v ∧ n ′ → t ′ � t .

4. For every parameterized action A(k) ∈ A such that ζ(A(k)) 6= NF

(a) If ζ(A(k)) = WF then for every quantified action B of A(k),

|= parSpec →WFv(B).

(b) If ζ(A(k)) = SF then for every quantified action B of A(k),

|= parSpec → SFv(B).

(c) |≈ n → 〈enabled B 〉v holds for every quantified action of A(k),

B, whenever n ∈ En(B).

(d) |≈ n∧〈B 〉v → ¬m ′ holds for all n,m ∈ N and for every quantified

action of A(k), B, such that (n,m) /∈ δB .

Proof. (sketch) Like theorem 7.1, this theorem is again a consequence of Theorem
5.4. The proofs of conditions 1 − 3 are similar to the proof of conditions 1 − 3
Theorem 7.1. For the proof of condition 4, we have to consider two cases, namely
for the quantified actions of the form A(i) and for the one of the form A(k). �

118 Chapter 7

(|pc1|, <)

(|pc1|, <)

pc[i] = 1

pc[i] = 2

a[i] < s |cs| = 0
∀k ∈ M \ {i} : pc[k] ∈ {1, 2}

Request(k)

(|pc1|, <)

∀k ∈ M \ {i} : pc[k] ∈ {1, 2, 3}
(|pc1|, <)

Request(k)

pc[i] = 1

a[i] < s |cs| = 1

Grant(k)Release(k)

Request(i)

Request(k)

Request(k)

pc[i] = 2

a[i] ≥ s

a[i] ≥ s

∀k ∈ M \ {i} : pc[k] ∈ {1, 2, 3}
|cs| = 1

|cs| = 0

∀k ∈ M \ {i} : pc[k] ∈ {1, 2}
|cs| = 1a[i] = s Request(k)

(|pc1|, <)

∀k ∈ M \ {i} : pc[k] ∈ {1, 2}

R
e
le

a
s
e
(i

)
R

e
q
u
e
s
t(

i)

Grant(i)

1

5

3

2

Grant(k) Release(k)
(a[i] − s,<)

4

(a[i] − s,≤)

pc[i] = 3

Figure 7.3: ppd for Tickets protocol for n ≥ 1 processes.

Let pc1 and cs be the set of processes whose pc is equal to 1 and 3,

respectively, the diagram in Figure 7.3 is a suitable ppd for Tickets protocol

for n ≥ 1 processes. We associate an ordering annotation (|pc1|, <) with

the loop of every node to ensure that eventually the system will leave the

loops due to the finiteness of M . We also associate the ordering annotation

(a[i]− s , <) with the edge from node 4 to node 3 and associate the ordering

annotation (a[i] − s ,≤) with the edge from node 3 to node 4 for avoiding

loops that may happen between the pair of nodes. Thus, we can ensure that

eventually process i is allowed to enter its critical section. The choice of the

orderings is based on the fact that whenever pc[i] = 2 then the difference

between a[i] and s is decreased whenever some process other than i leaves

its critical section and increments the value of s by 1.

The ppd in Figure 7.3 conforms to the Tickets specification in Figure 7.1.

We can use Theorem 7.5 for proving this conformance. For example we have:

Parameterized systems 119

• Init →

pc[i] = 1

∧ ∀k ∈ M \ {i} : pc[k] ∈ {1, 2}
∧ a[i] < s

∧ |cs| = 0

.

•

pc[i] = 1

∧ ∀k ∈ M \ {i} : pc[k] ∈ {1, 2}
∧ a[i] < s

∧ |cs| = 0

 ∧ [∃ k ∈ M : Next(k)]v →

∨

pc[i]′ = 1

∧ ∀k ∈ M \ {i} : pc[k]′ ∈ {1, 2}
∧ a[i]′ < s

∧ |cs ′| = 0

∨ 〈Request(i)〉v ∧

pc[i]′ = 2

∧ ∀k ∈ M \ {i} : pc[k]′ ∈ {1, 2}
∧ a[i]′ ≥ s

∧ |cs ′| = 0

∨ 〈∃ k ∈M \{i} : Request(k)〉v∧

pc[i]′ = 1

∧ ∀k ∈M \{i} : pc[k]′∈{1, 2}
∧ a[i]′ < s

∧ |cs ′| = 0

∨ 〈∃ k ∈M \{i} : Grant(k)〉v ∧

pc[i]′ = 1

∧ ∀k ∈M \{i} : pc[k]′∈{1, 2, 3}
∧ a[i]′ < s

∧|cs ′| = 1

 .

•

∧ ∧ pc[i] = 2

∧ ∀k ∈ M \ {i} : pc[k] ∈ {1, 2, 3}
∧ a[i] ≥ s

∧ |cs| = 1

∧ ∧ pc[i]′ = 2

∧ ∀k ∈ M \ {i} : pc[k]′ ∈ {1, 2}
∧ a[i]′ ≥ s

∧ |cs ′| = 0

∧ 〈∃ k ∈ M \ {i} : Release(k)〉v

−→ (a[i]′− s ′) < (a[i]− s).

Using the diagram in Figure 7.3 we can prove that it is always the case

that whenever process i request to enter its critical section, it will even-

tually enters its critical section, i.e. we can prove the validity of formula

120 Chapter 7

Tickets → 2(pc[i] = 2→ 3pc[i] = 3). Moreover, since we have just applied

the standard quantifier introduction rule of first-order logic, this implies the

validity of formula ∀ k ∈ M : Tickets → 2(pck = 2 → 3pck = 3) as

required.

Note that the mutual exclusion and communal accessibility properties of

Tickets protocol can also be verified using the ppd in Figure 7.3. Thus, in

general, ppd can not only be used to prove the universal properties of a

parameterized system, but also to verify the properties that related to the

whole system.

7.6 Discussion and related work

Verification of parameterized systems is often done by hand, or with the guid-

ance of a theorem prover [85, 80, 54]. Several methods have been proposed

that, to various degrees, automate this verification process. Methods based

on manual construction of a process invariant are proposed in [30, 107]. How-

ever, as the general problem is undecidable [12], it is not in general possible to

obtain a finite-state process invariant. For classes of parameterized systems

obeying certain constraints, for example [50, 44], there exists algorithms for

model checking the parameterized systems.

In this work we have restricted to a class of parameterized systems that

are interleaving and consist of a finitely, but arbitrarily, discrete components.

The parameterized systems are represented as parameterized TLA specifica-

tions. The verification is done deductively and algorithmically by means of

diagrams. Our diagrams can be viewed as the abstract representation of

parameterized systems, i.e. we represent a family of processes in a single

diagram. The same spirit but using difference formalism is the work from

Baukus et.al.[13, 14]. They propose a method for the verification of univer-

sal properties of parameterized networks based on the transformation of an

infinite family of systems into a single WS1S [23, 103] transition system and

applying abstraction techniques on this system.

By using the Tickets protocol as a running example, we have shown that

with a little modification on the conformance theorem of (ordinary) predicate

diagram, it is possible to verify properties related to whole processes with

predicate diagrams. In order to verify the universal properties we define

a variant of predicate diagrams called parameterized predicate diagrams or

ppds.

For handling the universal properties we distinguish some single arbitrary

process from the rest of processes. This can be extended for proving the prop-

Parameterized systems 121

erties that related to some set of particular processes. The idea is to consider

those processes separately from the rest of the processes. In this case, some

more complex reasoning might be necessary to do, such as induction on the

number of processes, depending on the protocol at hand.

We have shown that ppds can be used to prove the universal properties

and the properties related to the whole processes as well. In contrast to the

ordinary predicate diagrams, if we work with pdds then we have to consider

the actions of some particular process separately from the actions of the rest

of the processes. Therefore, in the worst case, the number of the generated

proof obligations is twice as the number of proof obligations generated by

the ordinary predicate diagrams.

122 Chapter 7

Chapter 8

Generation of diagrams

8.1 Overview

So far we have described the use of predicate diagrams, tpds and ppds, in

the verification of reactive systems. If we recall the verification process using

those diagrams, there are two steps should be done. The first step is to find

a diagram that conforms to the specification and then the second step is to

prove that the diagram satisfies the property to be verified. In order to prove

that a diagram really represents the specification we equip every type of

diagram with a theorem, which we call conformance theorem. For example,

the conformance theorem of predicate diagram, Theorem 5.4, can be used

to justify that a given predicate diagram conforms to a given specification.

The problem is that it may generate a number of proof obligations that

is quadratic in the number of nodes. It is therefore desirable to construct

predicate diagrams semi-automatically from a specification whenever this is

possible.

In our methodology diagrams can be viewed as the abstract representa-

tions of the systems being considered. Thus, the problem can be rephrased

as the generation of abstract representation of systems. There is much work

on the generation of abstract systems [31, 37, 74, 36], usually based on the

ideas of abstract interpretation [34]. We will follow the approach proposed

by Cansell et al.[26].

The contribution of this chapter is the development of two prototype

tools, namely PreDiaG and parPreDiaG, that can be used for generating

predicate diagrams and ppds.

We first describe the concept of our first implementation, namely the

generation of predicate diagrams. We then move to the generation of the

ppd in the next section. A short discussion and related work will be given

123

124 Chapter 8

at the end of this chapter.

8.2 Generation of predicate diagrams

Given a discrete system’s specification Spec ≡ Init ∧ 2[Next]v ∧ Lf , a set

of predicates, P and a set of actions A, the goal of our tool is to generate

a predicate diagram over P and A that conforms to the safety part of the

specification. In other word, our objective is to find a predicate diagram

G = (N , I , δ, ∅, ∅) such that G conforms to Init ∧ 2[Next]v . Notice that we

don’t consider liveness properties in our implementation.

8.2.1 Nodes

By definition, nodes of predicate diagrams are sets of P which are interpreted

conjunctively. Therefore, we may assume a node to be a conjunction of

literals. In the implementation, nodes are represented as n-bit vectors where

n is the number of state predicates in P . For example, if P consists of n

state predicates p1, . . . , pn , then a node will be represented as b1 . . . bn such

that for every i ∈ 1..n, either bi = 1 if pi holds or bi = 0 if pi doesn’t hold

on that node.

For a set of state predicates P , we denote by Nodes(P) the set containing

all nodes or n-bit vectors formed by the state predicates of P .

8.2.2 Abstract interpretation

We have used the concept of abstract interpretation [34] in the construction

of predicate diagrams. The relationship between concrete and abstract states

that underlies abstract interpretation is traditionally described by a Galois

connection, which is defined as follows.

Definition 8.1 (Galois connection) Let (L1,v 1) and (L2,v 2) be partially-

ordered sets (posets) and let α : L1 → L2 and γ : L2 → L1 be functions.

The pair (α,γ) is said to form a Galois connection if

∀ x ∈ L1, y ∈ L2 : x v1 γ(y)↔ y v2 α(x).

The set L1 and L2 are called the concrete and abstract domain, respectively.

The function α is called the abstraction function and γ is called the con-

cretization function.

Graphically, we can denote a Galois connection, for example, as is shown

in Figure 8.1.

Generation of diagrams 125

(L1,v1) (L2,v2)

γ

α

Figure 8.1: Galois connection between (L1,v1) and (L2,v2).

In our setting, we choose the powerset of ”concrete” states, 2Σ, as L1 and

Nodes(P) as L2. The abstraction function returns a set of nodes such that

α(S) = {n ∈ Nodes(P) : ∀s ∈ S : s ∈ γ(n)},
where S ⊆ Σ and the concretization function γ produces a set of states that

are models of a node

γ(n) = {s ∈ Σ : s |= n}.

8.2.3 Abstract evaluation of an action

Given an abstract state n ∈ Nodes(P), the main problem is to compute an

abstract representation of the set of successor states of the states in γ(n)

with respect to some action A of the given specification.

Definition 8.2 For m, n ∈ Nodes(P) and an action A ∈ A, we say that

n is an abstract successor of m iff for all states s , t in Σ, if s ∈ γ(m) and

s [[A]]t then t ∈ γ(n).

Because we may alternatively interpret abstract states as elements of L2

and as predicates over concrete states, the above definition can be restated

as requiring

|= m ∧ A→ n ′.

Since m is a node, we may assume m to be a conjunction of literals, and

try to compute some successors n in disjunctive normal form.

The abstract evaluation of A from m is done in two steps. The first

step is to check whether A can be taken on m or not. This step is done

by evaluating those sub-formulas of A that contain only unprimed variables

to either true or false in order to simplify the action formula. The second

step is to evaluate as many formulas P ′, for P ∈ P, as possible in order to

assemble information about the predicates that are true or false after the

action has been executed.

As example, let’s take the small system called AnyY problem [58]. Fig-

ure 8.2 presents a simple program consisting of two processes communicating

126 Chapter 8

by the shared variable x , which is initially set to 0. Process P1 keeps incre-

menting variable y as long as x 6= 0. Once process P2 sets x to 1, process P2

terminates and some time later so does P1 as soon as it observes that x = 1.

We will prove the termination of this system, i.e. eventually x is equal to 1,

and that the values of y is never negative.

module AnyY

Specification
Init ≡ x = 0 ∧ y = 0
P1 ≡ x = 0 ∧ y ′ = y + 1 ∧ x ′ = x
P2 ≡ x = 0 ∧ x ′ = 1 ∧ y ′ = y

v ≡ 〈x , y 〉
Next ≡ P1 ∨ P2

AnyY ≡ Init ∧2[Next]v
Theorem
1. AnyY → 3(x = 1).
2. AnyY → 2(y ≥ 0).

Figure 8.2: Module AnyY.

We first describe the abstract evaluation procedure for monadic pred-

icates. If P containes k monadic predicates P1(x), . . . ,P k(x) that contain

the same (concrete) state variable x , we let the abstract states contain k state

variables x 1, . . . , x k such that x i takes values P i or not-P i . For example, in

the context of AnyY problem, the predicate x = 0 might be represented by

the variable x ∈ {0, 1} and the predicate y = 0 might be represented by the

variable y ∈ {zero, pos}. Now every unprimed occurrence of variable x and

y in A is replaced by the value assigned to x i and y i by the abstract source

state m, for every x i and y i that appears in m. The formula simplification

is done with help of a rule-base, which is a set of rewriting rules. A rewriting

rule is an implication formula, such that the premise is the formula to be

simplified and the conclusion is the simplified formula.

Suppose P = {p1, p2, p3, p4}, where p1 ≡ x = 0, p2 ≡ x = 1, p3 ≡ y = 0

and p4 ≡ y > 0 and A = {P1,P2}. We will consider the evaluation of action

P1 from the state m = {x = 0, y = zero}. Assume that the set of rewriting

rules include
0 = 0 → true

zero + 1 → pos

pos + 1 → pos

For checking whether A can be taken on m or not, we consider the un-

primed part of A, which is a sub-formula containing no primed expressions.

Generation of diagrams 127

We say that A can be taken on m whenever the simplification process results

true.

Now we simplify the unprimed part of P1, which is x = 0, as follows:

formula simplified by

x = 0 0 = 0 (x = 0)
true (0 = 0→ true)

Since the simplification returns true, this means that P1 can be taken on this

state, we continue to generate the successors of this state. We now simplify

the primed part of P1 which is y ′ = y + 1 ∧ x ′ = x as follows:

formula simplified by

y ′ = y + 1 y ′ = zero + 1 (y = zero)
y ′ = pos (zero + 1→ pos)

formula simplified by

x ′ = x x ′ = 0 (x = 0)

Thus, the simplification process results y ′ = pos ∧x = 0. The successor state

of m is {x = 0, y = pos}.
In the implementation we use MONA [59] for generating the abstract

states. Since nodes are represented as n-bit vectors, in this case every node

is represented as b1b2b3b4 where every bi is pi atau ¬pi . The simplication

results x = 0 and y = pos , which imply that p1 dan p4 hold. To generate all

n-bit vectors that satisfy this condition we give the formula p1∧p4 to MONA

as input. With this input, MONA will result such an expression 1XX1 which

means that the values of p2 and p3 could either be 0 or 1. It follows that

1101 is also a valid node, which is wrong, since p2 won’t be true whenever

p1 is true, and vice versa. To avoid the tool for resulting such nodes, we add

some formula called constraint. In the context of AnyY problem, we take

p1 ↔ ¬p2 ∧ p3 ↔ ¬p4 as constraint. Giving the simplification’s result and

the constraint, we get the node 1001.

The generation of initial abstract states is done by considering Init . We

assign value to every state predicate in P based on the information in Init .

Again, in the context of AnyY problem, the predicates p1 and p3 are true.

We give the formula p1 ∧ p3 plus the constraint above to MONA as input.

The resulted node is 1010.

As conclusion, the generation of predicate diagrams is done by first eval-

uating Init to generate the initial abstract states. Then, for every abstract

128 Chapter 8

state m and every action A in A, the tool evaluates A from m to produce

the next states of m. The tool repeats this process until there are no more

new abstract states can be generated.

The resulted diagram for AnyY problem is given in Figure 8.3.

p1¬p2p3¬p4

¬p1p2p3¬p4p1¬p2¬p3p4

¬p1p2¬p3p4

P1
P1

P2

P2

Figure 8.3: The resulted predicate diagram for AnyY problem.

8.2.4 Maybe edges

Suppose we want to generate the predicate diagram for the Bakery algorithm.

The specification is given in Figure 5.3. Assume that we choose {0, 1, 2, 3}
as the abstract domain for the variables pc1 and pc2 and{zero, pos} for the

variables t1 and t2. The underlying set of rewrite rules, for example, include:

0 = 0→ true zero = zero → true zero ≤ zero → true

0 = 1→ false zero = pos → false zero ≤ pos → true
... zero + 1→ pos pos ≤ zero → false

4 = 4→ true pos + 1→ pos

Note that expressions such as pos = pos or pos ≤ pos cannot be sim-

plified. As consequence the evalution on action on this state is fail, since it

results neither true nor false.

In such situation, following Cansell et al. [26], we use the concept of

maybe edges, which can described as follows.

We assign the value maybe to such uninterpreted expression:

pos ≤ pos →maybe.

Maybe values are propagated using rewrite rules such as:

maybe ∧maybe → maybe

false ∧maybe → false

¬maybe → maybe

Generation of diagrams 129

Successor states can be extracted as described above even in the presence

of maybe conjuncts, but we remember such situation and indicate edges

obtained in this way using different color (red).

For the Bakery specification, we obtain the graph shown in Figure 8.4 with

the maybe edges are indicated with dasched edges. (The original generated

predicate diagram is given in Figure B.10). For the sake of compactness, we

label every node with the predicates that hold on that node. For example,

the node 10000100001010 will be labeled it with p1p6p11p14.

Unfortunately, the resulted diagram can not be used to prove the mutual

exclusion property. As we can see, on the node p6p9p12p14, predicates p4

and p9 hold, which means that the both processes are in their critical sec-

tions. However, every path leading to the abstract state contains a dashed

edge, and these edges indicate opportunities for refining the approximation

by reconsidering the transition in view of the concrete specification. Some

refinement techniques can be found, for example in [26] and [83].

p4p6p12p13 p4p7p12p13 p4p8p12p14 p4p9p12p14 p4p10p12p14

NCrit2 Req2 Try2 Crit2

p1p8p11p14 p1p9p11p14 p1p10p11p14p1p7p11p13p1p6p11p13

E
x
it
2

E
x
it
2

E
x
it
2

E
x
it
2

NCrit2 Req2 Try2 Crit2

p2p6p11p13 p2p10p11p14
p2p7p11p13 p2p8p11p14 p2p9p11p14

NCrit2 Req2 Crit2Try2

p3p6p12p13 p3p7p12p13 p3p8p12p14 p3p9p12p14 p3p10p12p14

NCrit2 Req2 Try2 Crit2

p5p6p12p13 p5p7p12p13 p5p8p12p14 p5p9p12p14 p5p10p12p14

NCrit2 Req2 Try2 Crit2

E
x
it
1

E
x
it
1

N
C

r
it

1

N
C

r
it

1

N
C

r
it

1

N
C

r
it

1

N
C

r
it

1

R
e
q
1

R
e
q
1

R
e
q
1

R
e
q
1

R
e
q
1

T
r
y
1

T
r
y
1

T
r
y
1

T
r
y
1

T
r
y
1

C
r
it

1

C
r
it

1

C
r
it

1

C
r
it

1

C
r
it

1

E
x
it
2

E
x
it
1

E
x
it
1

E
x
it
1

Figure 8.4: Predicate diagram for Bakery algorithm.

8.3 Generation of PPDs

We have presented the generation of predicate diagrams. We now move to

the next topic, namely the generation of ppds. We can not use Prediag for

130 Chapter 8

generating ppds, since PreDiaG cannot handle the expression with quantifi-

cations.

Given a parameterized system specification parSpec ≡ Init ∧ 2[∃ k ∈
M : Next(k)]v ∧ ∀k ∈ M : Lf (k), a set of state predicates P and a set of

parameterized actions A, our goal is to generate a ppd that conforms to the

safety part of parSpec.

Nodes of ppds are represented as n-bit vectors as before. The generation

process consists of finding the initial abstract states and evaluating every

action in A from some state.

Differs from the first implementation, we now rely all the evaluation pro-

cesses on MONA. We even require the specification and the predicate input

files are written in the input of MONA. The translation from TLA* to the

input language of MONA, unfortunately, should be done by the user. How-

ever, since the syntax of the input language of MONA is quite simple, we

hope that this would not be a big problem. To learn more about the syntax

of the language of MONA the readers may refer to [59]. Note that since

we use MONA as a consequence we only work with formulas that can be

expressed by the input language of MONA.

As illustration, let’s consider the specification given in Figure 8.5. It can

be proven that the specification of an abstract version of the specification of

Tickets protocol for n ≥ 1 processes in Figure 7.1. We prefer to work with

the abstract version to to tackle the infiniteness problem due to the infinite

domains of the variables s , t and a.

module absTickets

Specification
Init ≡ ∀ k ∈ M : k ∈ Pc1 ∧ Pc2 = ∅ ∧ Pc3 = ∅

Request(k) ≡ k ∈ Pc1 ∧ Pc ′1 = Pc1 \ {k} ∧ Pc ′2 = Pc2 ∪ {k} ∧ Pc ′3 = Pc3

Grant(k) ≡ ∧ k ∈ Pc2 ∧ Pc3 = ∅ ∧ Pc ′1 = Pc1

∧ Pc ′3 = Pc3 ∧ {k} ∧ Pc ′2 = Pc2 \ {k}
Release(k) ≡ k ∈ Pc3 ∧ Pc ′3 = Pc3 \ {k} ∧ Pc ′1 = Pc1 ∪ {k} ∧ Pc ′2 = Pc2

vars(k) ≡ 〈Pc1,Pc2,Pc3 〉
Next(k) ≡ Request(k) ∨Grant(k) ∨ Release(k)

absTickets ≡ Init ∧2[∃ k ∈ M : Next(k)]vars

Figure 8.5: The Tickets protocol (abstract version).

Suppose we want to generate ppd for absTicket where P contains the

following state predicates:

Generation of diagrams 131

• p1 ≡ i ∈ Pc1

• p2 ≡ i ∈ Pc2

• p3 ≡ i ∈ Pc3

• p4 ≡ ∀ j , k ∈ M : j ∈ Pc3 ∧ k ∈ Pc3 → j = k

• p5 ≡ Pc3 6= ∅

and A contains the actions Request(k),Grant(k) and Release(k).

The evaluation of Init produces one abstract initial state 10010. The

process continues with the evaluation of quantified actions of every param-

eterized action in A in order to get the successor of node 10010. Con-

sider the evaluation of quantified action Request(i) on node 10010. Giving

p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ ¬p5, Request(i) as input, we get a new node 01010.

The evaluation of Grant(k) on node 10010 result a node 10011. The final

diagram is given in Figure 8.6.

Request(k)

p1¬p2¬p3p4¬p5

p1¬p2¬p3p4p5

Request(k)

Request(k)

¬p1¬p2p3p4p5

Request(k)

Request(k)

¬p1p2¬p3p4p5

¬p1p2¬p3p4¬p5

R
e
le

a
s
e
(i

)

Grant(k)

Request(i)

Grant(k) Release(k)

Grant(i)

Release(k)

R
e
q
u
e
s
t(

i)

Figure 8.6: ppd for Tickets protocol with n ≥ 1 processes.

132 Chapter 8

8.4 Discussion and related work

We have presented a method for generating predicate diagrams and ppds

”semi-automatically”. We use the term semi-automatically, since the user’s

intervention is still needed, in particular for defining the abstraction functions

and rewriting rules. We have implemented this method in two prototype tools

called PreDiaG and parPreDiaG.

There are some tools based on the similar idea, such as InVest from Saidi

et al. [53, 98] and SAL from Bensalem et al. [16, 17]. PreDiaG is very

closed to the tool from Cansell et al. [26]. Instead of using the rewriting

engine Logic Solver from Atelier B [102] and the automatic prover Simplify

[42] like their implementation, PreDiaG uses its own simple rewriting en-

gine and MONA1. Besides the generation algorithm that is implemented in

PreDiaG, their tool has also implemented some methods for improving the

abstract interpretation; but it does not support the generation of Promela

code and the graphical representation of predicate diagrams. In the context

of parameterized systems, parPreDiaG is inspired by PAX [91] from Baukus

et al.

It is said that abstractions that remove too much information from the

concrete system and are thus too coarse will fail to prove the property of

interest. They can be refined, by adding more detail, until the property

can be proved or a concrete counterexample is found. This holds also in

the construction of diagrams using our tools. When the resulted diagram is

too ”abstract”, we can refine it with details as necessary to make it more

”concrete” by returning to the concrete specification.

1We use MONA because it is easy to use and to integrate to our tools.

Chapter 9

Conclusion and future work

We have studied the specification and verification of some classes of reac-

tive systems, namely discrete systems, real-time systems and parameterized

systems. We use TLA* from Merz to formalize our approach.

The general formula for representing reactive systems is as follows:
∃∃∃∃∃∃ x : Init ∧2[Next]v ∧ L

where

• x is a list of internal variable,

• Init is a state predicate that describes the initial states,

• Next is an action characterizing the system’s next-state relation,

• v is a state function, and

• L is a formula stating the liveness conditions expected from the system.

This formula essentially describes a state machine, augmented by liveness

condition, that generates the allowed behaviors of the system under speci-

fication. For the more specific classes of reactive systems, in particular the

classes of reactive systems we have considered in this thesis:

• For discrete systems, a specification is a formula of the form Spec ≡
Init ∧2[Next]v ∧Lf , where Lf is a conjunction of formula WFv(A) and

SFv(A) where A is an action which appears as disjunct of Next .

• For real-time systems, a specification is a formula of the form RTSpec ≡
Init ∧2[Next]v ∧ RTNow(v) ∧ RT where

– RTNow(v) is the formula that asserts that now (the variable used

to model real-time) is initially equal to 0 and it increases mono-

tonically and without bound and

133

134 Chapter 9

– RT is a conjunction of real-time bound formulas RTBound(Ai , v ,

t i , d i , e i) where Ai is a sub-action or disjunct of Next , t i , d i and

e i is the timer, lower bound and upper bound of Ai , respectively.

• For parameterized systems, a specification is a formula of the form

parSpec ≡ Init ∧2[∃ k ∈ M : Next(k)]v ∧ ∀ k ∈ M : Lf (k).

In our methodology, we use a class of diagrams called predicate diagrams

as abstract representation of the discrete systems being considered. Assume

given a specification of discrete system Spec and a temporal formula F , the

verification of discrete systems using our diagrams can be done in two steps:

• The first step is to find a diagram that conforms Spec. To prove that

a diagram conforms to a specification, we equip the diagram with a

corresponding conformance theorem in order to produce some proof

obligations. The proof is done deductively either manually by hand or

by using an automatic theorem prover.

• The second step is to prove that all traces through the diagram satisfy

F . In this step, we view the diagram as a finite transition system that

is amenable to model checking. All predicates and actions that appear

as labels of nodes or edges are then viewed as atomic propositions.

Regarding predicate diagrams as finite labeled transition systems, their

runs can be encoded in the input language of standard model checkers

such as SPIN.

Thus, our methodology can be viewed as an integration between deductive

and algorithmic verification techniques.

In Section 5.6, we have successfully proven the completeness of predicate

diagram. The proof is done in four steps:

• The construction of formula automatonMf which is a Muller automa-

ton accepting exactly the behaviors satisfying F .

• The construction of specification automaton Ms , which is a Muller

automaton such that the accepting condition is defined in a way such

that it exactly characterizes the fairness of Spec.

• The construction of product automatonMp , which is the product au-

tomaton of Mf and Ms . Thus, the properties of Mp are inherited

from Mf and Ms .

Conclusion and future work 135

• The last step is the translation of the product automaton into predicate

diagram.

We have also shown that the concept of predicate diagrams is capable

enough to handle some other classes of reactive systems such as real-time

systems and parameterized systems. To verify real-time systems, we define a

variant of predicate diagrams called timed predicate diagrams or tpds. The

idea of these diagrams is to use the components of predicate diagrams re-

lated to discrete properties and to replace the components related to the

fairness conditions with some components related to real time conditions.

For the components related to real-time property, we adopt the structure of

timed-automata. Thus, in one direction, tpds can be viewed as an extension

of predicate diagrams. In the other direction, we may say that predicate

diagrams are restricted tpds. Particularly, when we eliminate all the com-

ponents of timed predicate diagrams that are related to real-time property,

then we have predicate diagrams without fairness conditions. We call such

a predicate diagram the untimed version of a tpd. In the context of pa-

rameterized systems, we have shown that the (ordinary) predicate diagrams

can still be used for proving the properties that are related to the whole

processes. Whereas to prove the universal properties, i.e. the properties

that are related to one single process, we define a class of diagrams called

parameterized predicate diagrams or ppds.

The verification of real-time systems and parameterized systems using

tpds and ppds are similar to the verification of discrete systems using pred-

icate diagrams.

Using the concept of abstract interpretation we have shown that our

diagrams can be generated semi-automatically. We use the term ”semi-

automatically”, since the user’s intervention is still needed, in particular for

defining the abstraction functions and rewriting rules. We have developed

two prototype tools: PreDiaG, for the generation of predicate diagrams, and

parPreDiaG, for the generation of ppds.

Some possible tracks for future work that come to mind are listed below.

• Hybrid systems. Basically, hybrid systems can be viewed as the

union of discrete and real-time systems. However, it is still needed to

study the special characteristic of this class of systems and to investi-

gate the extension or modification that should be done over predicate

diagrams.

• Completeness of tpds and ppds. In this work, we only consider

the completeness of predicate diagrams. The proof of the completeness

136 Bibliography

of tpds and ppds should be an interesting topic for a research. For

proving the completeness of tpds, it is indicated, that we can use the

concept of timed automata and do the similar proof as we did in proving

the completeness of predicate diagrams. However, this indication is still

needed to be explored. Unfortunately, the proof of ppds is still an open

question.

• Tool support. For the practical application of our method tool sup-

port is essential. The tools we have implemented are prototypes that

are still needed to be improved, in particular in the aspect of graphical

user interface. We have shown that the generation of diagrams can be

done incrementally. We should or may refine the diagrams resulted by

our tools, until we get the desired diagrams. Thus, there is also a need

to have a good graphical editor that can support the refinement of the

diagrams. It is also desirable to have a translator from TLA+ to MONA

syntax and to integrate these tools with an existing automatic theorem

prover in order to prove the proof obligations whenever needed.

Bibliography

[1] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real

time. ACM Transactions on Programming Languages and Systems,

16(5):1543-1571, September 1994.

[2] Martin Abadi and Stephan Merz. On TLA as a logic. In Manfred Broy,

editor, Deductive Program Design, NATO ASI series F, pages 235-272,

Springer-Verlag, Berlin, 1996.

[3] M.W. Alford, J.P. Ansart, G. Hommel, L. Lamport, B. Liskov, G.P.

Mullery and F.B. Schneider. Distributed Systems: Methods and tools

for specification. Volume 190 of Lecture Notes in Computer Science.

Springer-Verlag, 1985.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information

Processing Letters, 21:181-185, October 1985.

[5] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.

Technical Report 86-727, Cornell University, Ithaca, New York, Jan-

uary 1986.

[6] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.

Distributed Computing 2, pp. 117-125, 1987.

[7] Rajeev Alur. Timed automata. NATO ASI Summer School on Verifi-

cation of Digital and Hybrid Systems, 1998.

[8] Rajeev Alur, C. Courcoubetis and David L. Dill. Model-checking for

real-time systems. In Proceeding of the 5th Annual Symposium on Logic

in Computer Science, pp 414-425. IEEE Computer Society Press, 1990.

[9] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science 126:183-235, 1994.

137

138 Bibliography

[10] R. Alur and T.A. Henzinger. A really temporal logic. In Proc. 30th

IEEE Symp. Found. of Comp. Sci., pages 164-169, 1989.

[11] R. Alur and T.A. Henzinger. Logics and models of real time: A survey.

In J.W. de Bakker, C. Huizing, W.P. de Roever and G. Rozember, ed-

itors, Proceedings of the REX Workshop ”Real-Time: Theory in Prac-

tice”, volume 600 of Lecture Notes in Computer Science, pages 74-106.

Springer-Verlag, 1992.

[12] K. Apt and D. Kozen. Limits for automatic verification of finite-state

concurrent systems. Information Processing Letters, Volume 15, pp.

307-309. 1986.

[13] Kai Baukus, Yassine Lakhnech and Karsten Stahl. Verifying Universal

Properties of Parameterized Networks. Technical Report TR-sT-00-4,

CAU Kiel, July, 2000.

[14] Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl.

Abstracting WS1S Systems to Verify Parameterized Networks. In Pro-

ceeding of the 6th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS 2000), Volume

1785 of Lecture Notes in Computer Science, pages 188-203. Springer,

2000.

[15] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang and

Carsten Weise. New Generation of Uppaal. Int. Workshop on Software

Tools for Technology Transfer. June 1998.

[16] S. Bensalem, Y. Lakhnech and S. Owre. Computing abstractions of infi-

nite state systems automatically and compositionally. In Conference on

Computer Aided Verification (CAV-98), volume 1427 of Lecture Notes

in Computer Science, pages 319-331. Springer-Verlag, 1998.

[17] S. Bensalem, et.al. An overview of SAL. In C M. Holloway, editor,

LFM 2000: 5th NASA Langley Formal Methods Workshop, pages 187-

196, 2000.

[18] M. Bozzano and G. Delzanno. Beyond Parameterized Verification. In

Proceedings of International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS 2002. Volume 2280

of Lecture Notes in Computer Science, pages 221-235. Springer, 2002.

Bibliography 139

[19] Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and

Tomás Uribe. Diagram-based Formalisms for the Verification of Re-

active Systems. In CADE-13 Workshop on Visual Reasoning, New

Brunswick, NJ, July 1996.

[20] Anca Browne, Zohar Manna and Henny B. Sipma. Generalized veri-

fication diagrams. In 15th Conference in the Foundations of Software

Technology and Theoretical Computer Science, volume 1026 of Lecture

Notes in Computer Science, pages 484-498, December, 1995.

[21] Anca Browne, Zohar Manna and Henny B. Sipma. Modular verification

diagrams. Technical report Computer Science Departement, Stanford

University, 1996.

[22] R.E. Bryant. Graph-based algorithmics for boolean function manipu-

lation. IEEE Transactions on Computers C-35(8):677-691.

[23] J.R. Büchi. Weak second-order arithmatic and finite automata. Z.

Math. Logik Grundl. Math., 6:66-92, 1960.

[24] J.R. Büchi. On a decision method in restricted second order arithmatic.

Proceedings of the International Congress on Logic, Method and Philys-

ophy in Science 1960, Stanford, CA, 1962. Stanford University Press,

1-12.

[25] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang.

Symbolic model checking:1020 states and beyond. Information and

Computation 98(2):142-170.

[26] Dominique Cansell, Dominique Méry and Stephan Merz. Predicate di-

agrams for the verification of reactive systems. In 2nd Intl. Conf. on

Integrated Formal Methods (IFM 2000), vol. 1945 of Lectures Notes

in Computer Science, Dagstuhl, Germany, November 2000. Springer-

Verlag.

[27] E.M. Clarke and E.A. Emerson. Characterizing correctness proper-

ties of parallel programs using fixpoints. International Colloquim on

Automata, Languages and Programming. Vol. 85 of Lecture Nodes in

Computer Science, pp. 169-181, Springer-Verlag, July, 1980.

[28] E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-

tion skeletons using branching time temporal logic. Workshop on Logic

140 Bibliography

of Programs, Yorktown Heights, NY. Vol. 131 of Lecture Nodes in Com-

puter Science, pp. 52-71, Springer-Verlag, 1981.

[29] E.M. Clarke, T. Filkorn and S. Jha. Exploiting symmetry in tempo-

ral logic model checking. In Courcoubetis, editor. Proceedings of the

5th Workshop on Computer-Aided Verification. Volume 693 of Lecture

Nodes in Computer Science, pp. 450-462. Springer, 1993.

[30] E.M. Clarke and O. Grumberg. Avoiding the state explosion problem

in temporal logic model checking. Proceedings of the 6th annual ACM

Symposium on Principles of Distributed Computing, pp. 294 - 303.

Columbia, Canada, August 1987.

[31] E.M. Clarke, O. Grumberg and D.E. Long. Model checking and ab-

straction. ACM Transactions on Programming Languages and Systems,

16(5), 1994.

[32] Edmund M. Clarke, Orna Grumberg and Doron A. Peled. Model

Checking. The MIT Press, 1999.

[33] M.A. Colón and T.E. Uribe. Generating finite-state abstraction of re-

active systems using decision procedures. In Conference on Computer-

Aided Verification, volume 1427 of Lecture Notes in Computer-Science,

pages 293-304. Springer-Verlag, 1998.

[34] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation

of fixpoints. In 4th ACM Symp. Princ. of Prog. Lang., pp. 238-252.

ACM Press, 1977.

[35] Radhia Cousot. Fondements de méthodes de preuve d’invarince et de

fatalité de programmes paralléles. PhD thesis. INPL, 1985.

[36] D. Dams. Abstract interpretation and partition refinement for model

checking. PhD thesis, Technical University of Eindhoven, 1996.

[37] D. Dams, R. Gerth and O. Grumberg. Abstract interpretation of reac-

tive systems: Abstractions preserving ACTL*, ECTL* and CTL*. In

Proceedings of the IFIP WG2.1/WG2.2/WG2.3 (PROCOMET). IFIP

Transactions, North-Holland/Elsevier, 1994.

[38] D. Dams, R. Gerth and O. Grumberg. A heuristic for the automatic

generation of ranking functions. In Proceedings of Workshop on Ad-

vances in Verification, pages 1-8. 2000.

Bibliography 141

[39] Marco Daniele, Fausto Giunchiglia and Moshe Y. Vardi. Improved Au-

tomata Generation for Linear Temporal Logic. In Proc. 11th Intl. Con-

ference on Computer Aided Verification. Volume 1633 of Lecture Notes

in Computer Science, pages 249-260. Springer, 1999.

[40] S. Das, D.L. Dill and S. Park. Experience with predicate abstractions.

In Proc. 11th Intl. Conference on Computer Aided Verification. Volume

1633 of Lecture Notes in Computer Science. pages 160-171, Springer,

1999.

[41] L. de Alfaro and Zohar Manna. Temporal verification by diagram trans-

formations. In Proc. 8th International Conference on Computer Aided

Verification. Volume 1102 of Lecture Notes in Computer Science, pages

288-299. Springer, July, 1996.

[42] D. Detlefts, G. Nelson, and J. Saxe. Simplify: the ECS theorem prover.

Technical report, Systems Research Center, Digital Equipment Corpo-

ration, Palo Alto, CA, November 1996.

[43] E.A. Emerson and A.P. Sistla. Symmetry and model checking. In Cour-

coubetis, editor. Proceedings of 5th Workshop on Computer-Aided Ver-

ification, pp. 463-478. June/July 1993.

[44] E.A. Emerson and K.S. Namjoshi. Automatic verification of param-

eterized synchronous systems. In Proceeding of 8th Conference on

Computer-Aided Verification. Volume 1102 of Lecture Notes in Com-

puter Science, pp. 87-98. Springer, 1996.

[45] E.A. Emerson and K.S. Namjoshi. Verification of a parameterized bus

arbitration protocol. Volume 1427 of Lecture Notes in Computer Sci-

ence, pp. 452–463. Springer,1998.

[46] Melvin Fitting. First-order logic and automated theorem proving.

Graduate Texts in Computer Science. Springer-Verlag. 1996.

[47] Rober W. Floyd. Assigning meanings to programs. Proc. Symposia in

Applied Mathematics, 19:19-32, 1967.

[48] Jean H. Gallier. Logic for Computer Science: Foundation of automatic

theorem proving. Harper & Row, Publisher, Inc. New York. 1986.

142 Bibliography

[49] Paul Gastin and Denis Oddoux. Fast LTL to Buchi Automata Trans-

lation. Proceedings of 13th Conference on Computer-Aided Verifica-

tion. Volume 2102 of Lecture Notes in Computer Science, pages 53-65.

Springer, 2001.

[50] S. German and A.P. Sistla. Reasoning about systems with many pro-

cesses. Journal of the ACM, Vol. 39, Number 3, July 1992.

[51] Rob Gerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper. Simple

on-the-fly automatic verification of linear temporal logic. PSTV 1995:

3-18.

[52] P. Godefroid and D. Pirottin. Refining dependencies improves partial-

order verification methods. In Proceedings of the 5th Conference on

Computer-Aided Verification. Volume 697 of Lecture Notes in Com-

puter Science, pp. 438-449. Springer, 1993.

[53] S. Graf and H. Saidi. Construction of abstract state graphs with

PVS. In O. Grumberg, editor, Conference on Computer Aided Verifi-

cations. Volume 1254 of Lecture Notes in Computer-Science, pp. 72-83.

Springer-Verlag, 1997. June 1997, Haifa, Israel.

[54] K. Havelund and N. Shankar. Experiments in theorem proving and

model checking for protocol verification. FME. Volume 1051 of Lecture

Notes in Computer Science, pages 662-681. Springer, 1996.

[55] T. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Method-

ologies for Timed Transition Systems. Information and Computation,

112(2):273-337, 1994.

[56] C.A.R. Hoare. An axiomatic basis for computer programming. Com-

munications of the ACM, 12(10):576-580, 1969.

[57] G. Holzmann. The SPIN model checker. IEEE Trans. on software en-

gineering, 16(5):1512-1542. May 1997.

[58] Y. Kesten and A. Pnueli. Taming the Infinite: Verification of Infinite-

State Reactive Systems by Finitary Means. In Engineering Theories of

Software Construction, (NATO) Science Series, Series III: Computer

and Systems Sciences, Vol. 180, pages 261-299, IOS Press 2001.

[59] Y. Kesten, Z. Manna and A. Pnueli. Verification of Clocked and Hybrid

Systems. In G. Rozenberg and F.W. Vaandrager, editors, Lectures on

Bibliography 143

Embedded Systems, volume 1494 of Lecture Notes in Computer Sci-

ence, pages 4-73. Springer-Verlag, 1998.

[60] E. Kindler. Safety and Liveness Properties: A survey. Bulletin of the

European Association for Theoretical Computer Science, Vol. 53, pp.

268-272, 1994.

[61] N. Klarlund and A. Møller. MONA Version 1.3 UserManual. BRICS,

1998.

[62] R. Koymans. Specifying real-time properties with metric temporal

logic. Real-time Systems, 2(4):255-299, 1990.

[63] R. Koymans and W.-P. Roever. Examples of a real-time temporal logic

specifications. In B.D. Denvir, W.T. Harwood, M.I. Jackson and M.J.

Wray, editors, The analysis of concurrent systems. Volume 207 of Lec-

ture Notes in Computer Science, pages 231-252. Springer-Verlag, 1985.

[64] R. Koymans, J. Vytopyl and W.-P. de Roever. Real-time programming

and asynchronous message passing. In Proc. 2nd ACM Symp. Princ.

of Dist. Comp., pages 187-197,1983.

[65] Fred Kröger. Temporal logic of programs. EATCS Monographs on The-

oretical Computer Science, Vol. 8. Springer-Verlag. 1986.

[66] Robert P. Kurshan. Computer Aided Verification of Coordinating Pro-

cesses:The automata-theoretic approach. Princeton University Presss.

1994.

[67] Leslie Lamport. A new solution of Dijkstra’s concurrent programming

problem. Communications of the ACM, 17(8):435-455, 1974.

[68] Leslie Lamport. Proving the correctness of multiprocess programs.

IEEE Transactions on Software Engineering, SE-3(2):125-143, March,

1977.

[69] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on

Programming Languages and Systems, 16(3) : 872-923, May 1994.

[70] Leslie Lamport. TLA in Pictures. SRC Research Report 127, Digital

System Researh, California, 1994.

[71] Leslie Lamport. Introduction to TLA. SRC Technical Node 1994-001,

Digital System Research, California. December, 1994.

144 Bibliography

[72] Leslie Lamport. Specifying concurrent systems with TLA+. In Calcula-

tion System Design. M. Broy and R. Steinbrüggen, editors. IOS Press,

Amsterdam, 1999.

[73] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools

or Hardware and Software Engineers. Addison-Wesley, 2002.

[74] C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani and S. Bensalem. Prop-

erty preserving abstractions for the verification of concurrent systems.

Formal Methods in System Design, 6(1), 1995.

[75] Zohar Manna, Michael Colon, Bernd Finkbeiner, Henny Sipma and

Tomás Uribe. Abstraction and Modular Verification of Infinite-State

Reactive Systems. In Requirements Targeting Software and Systems

Engineering (RTSE). Volume 1526 of Lecture Notes in Computer-

Science, pp 273-292. Springer, 1998.

[76] Zohar Manna and Amir Pnueli. A Hierarchy of Temporal Properties. In

Proc. ACM Symposium on Principles of Distributed Computing, 1990.

[77] Zohar Manna and Amir Pnueli. Models for reactivity. Acta Informatica,

30:609-678, 1993.

[78] Zohar Manna and Amir Pnueli. Clocked Transition Systems. Technical

Report STAN-CS-TR-96-1566, Dept. of Computer Science, Stanford

University. April, 1996.

[79] Zohar Manna and Amir Pnueli. Temporal verification diagrams. In

Proc. Intl. Symposium on Theoretical Aspects of Computer Software.

Volume 697 of Lecture Notes in Computer Science, pages 726-765.

Springer-Verlag, 1994.

[80] Zohar Manna and Amir Pnueli. Verification of parameterized programs.

In Specification and Validation Methods (E. Borger, ed.), Oxford Uni-

versity Press, pp. 167-230, 1994.

[81] Zohar Manna and Amir Pnueli. Temporal verification of reactive sys-

tems: safety, Springer-Verlag New York, Inc., New York, NY, 1995.

[82] K.L. McMillan. Symbolic model checking:an approach to the state ex-

plosion problem. Kluwer Academic, 1993.

Bibliography 145

[83] Stephan Merz. Logic-based analysis of reactive systems: hiding, com-

position and abstraction. Habilitationsschrift. Institut für Informatik.

Ludwig-Maximillians-Universitẗ, Munich Germany. December 2001.

[84] R. McNaughton. Testing and generating infinite sequence by a finite

automaton. Inform. Contr. 9, pages 521-530, 1966.

[85] J. Misra and K.M. Chandy. Parallel program design: a foundation.

Addison-Wesley Publishers, 1988.

[86] D.E. Muller. Infinite sequences and finite machines. In Proc. 4th IEEE

Symp. on Switching Circuit Theory and Logical Design, 99:3-16, 1963.

[87] C.E. Nugraheni. Prediag: A tool for the generation of predicate dia-

grams. In Proceeding of Student Research Forum, SOFSEM 2002, pp.

35–40, November 2002.

[88] J.S. Ostroff. Formal methods for the specification and design of real-

time safety critical systems. In Journal of Systems and Software, Vol.

18, Number 1, April 1992.

[89] J.S. Ostroff. Temporal logic of real-time systems. Advanced Software

Development Series. Research Studies Press (John Wiley & Sons),

Taunton, England, 1990.

[90] Susan Owicki and Leslie Lamport. Proving liveness properties of con-

current programs. ACM Transactions on Programming Languages and

Systems, 4(3):455-495, July 1982.

[91] PAX Tool:Parameterized systems Abstracted and eXplored. Avaiable

at http://www.informatik.uni-∨kiel.de/~kba/pax/.

[92] Doron Peled. Combining partial order reductions with on-the-fly

model-checking. In Dill, editor. Proceedings of the 1994 Workshop on

Computer-Aided Verification. Volume 818 of Lecture Notes in Com-

puter Science, pages 377-390. Springer-Verlag, 1994.

[93] Doron Peled. Software reliability methods. Texts in Computer Science.

Springer, 2001.

[94] Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Sym-

posium Foundation of Computer Science, pages 46-57, IEEE Computer

Society Press, 1977.

http://www.informatik.uni-kiel.de/~kba/pax/

146 Bibliography

[95] J.P. Quielle and J. Sifakis. Specification and verification of concurrent

systems in CESAR. In M. Dezani-Cianzaglini and Ugo Montanari, edi-

tors, International Symposium on Programming. Volume 137 of Lecture

Notes in Computer Science, pp. 337-350. Springer-Verlag, 1981.

[96] M.O. Rabin. Decidability of second-order theoried and automata on in-

finite trees. Transactions of the American Mathematical Society, 141:1-

35, 1969.

[97] Fred B. Schneider. Decomposing properties into safety and liveness us-

ing predicate logic. Technical Report 87-874, Departement of Computer

Science, Cornell University, Ithaca, New York, October 1987.

[98] H. Saidi and N. Shankar. Abstract and model check while you prove.

In N. Halbwachs and D. Peled, editors, Conference on Computer-Aided

Verification (CAV’99). Volume 1633 of Lecture Notes in Computer-

Science, pages 443-454, Trento, Italy, 1999, Springer-Verlag.

[99] Henny B. Sipma. Diagram-based verification of discrete, reactive and

hybrid systems. PhD Thesis, Dept. of Computer Science, Standford

University, 1999.

[100] A.P. Sistla. On the characterization of safety and liveness properties

in temporal logic. In Proceeding of the 4th annual ACM Symposium

on Principles of Distributed Computing, pages 39-48, Minaki, Ontario,

Canada, August, 1985. ACM.

[101] Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata from

LTL Formulae. In the 12th Conference on Computer Aided Verification

(CAV’00). Volume 1633 of Lecture Notes in Computer Science, pages

247-263. Springer Verlag, 2000.

[102] STERIA - Technolgies de l’Information, Aix-en-Provence (F). Atelier

B, Manual Utilisateur, 1998. Version 3.5.

[103] W. Thomas. Automata on infinite objects. In Handbook of Theoretical

Computer Science, Volume II:Formal Methods and Semarntics, pages

134-191. Elsevier Sciences Publishers B.V., 1990.

[104] TReX Examples: Fischer protocol in http://www_verimag.imag.fr/

~annichin/trex/demos/fischer.html.

http://www_verimag.imag.fr/~annichin/trex/demos/fischer.html
http://www_verimag.imag.fr/~annichin/trex/demos/fischer.html

Bibliography 147

[105] A. Valmari. A stubborn attack on state explosion. In Proceedings of the

2nd Workshop on Computer-Aided Verification. Volume 663 of Lecture

Notes in Computer Science, pages 260-175. Springer-Verlag, 1992.

[106] Pierre Wolper. Constructing automata from temporal logic formulas:

A tutorial. In Lectures on Formal Methods in Performance Analysis

(First EEF/Euro Summer School on Trends in Computer Science).

Volume 2090 of Lecture Notes in Computer Science, pages 261-277.

Springer-Verlag, July 2001.

[107] P. Wolper and V. Lovinfose. Verifying properties of large sets of pro-

cesses with network invariants. In J. Sifakis (ed), Automatic Verifica-

tion Methods for Finite State Systems. Volume 407 of Lecture Notes in

Computer Science, pages 68-80. Springer-Verlag, 1990.

[108] M.Y. Vardi and P. Wolper. An automata-theoretic approach to auto-

matic program verification. In Proceeding of the First Symposium on

Logic in Computer Science, pages 322-331. Cambridge, June 1986.

[109] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.

Information and Computation, 115(1):1-37, 1994.

[110] Sergio Yovine. Kronos: A verification tool for real-time. In Inter-

national Journal of Software Tools for Technology Transfer, Vol. 1,

Nber. 1+2, p.123-133, December 1997. Springer-Verlag Berlin Heidel-

berg 1997.

148 Appendix

Appendix A

Automata generation

2

3

true

v

(b)

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅∅

∅

true false true true false

∅

{v}

∅

∅

{v}

∅

1 2 3

(a)

true

Figure A.1: Formula graph and Muller automaton for v.

149

150 Appendix A

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅∅

∅

true false true true false

∅

∅

1 2 3

{◦v}

{v}

{◦v}

{v}

false

false

∅

{v}

∅

∅

∅

∅

4
false true

∅ ∅

∅ ∅

∅ ∅

(a)

5

2

true

v

true

true 4

5

(b)

Figure A.2: Formula graph and Muller automaton for ◦v.

∅

∅

true true

∅

∅

4

(a)

∅

∅

true true

∅

∅

∅

1 2 3

5 6

∅

true

(b)

3 6

4

true

∅ ∅

∅ ∅

∅

∅

∅

∅

∅

∅ ∅

∅

∅ ∅

true true

∅

∅

∅

true

∅

false false

false false

{p→q}

{p→q}

{q}

{p→q} {p→q,

q}

{p}{p→q}

¬p
q

{p}

Figure A.3: Formula graph and Muller automaton for p→ q.

Automata generation 151

∅

∅

∅

∅

∅

∅

∅

∅

∅

true false true

∅

1 2 3

(a)

true

3

(b)

truefalse

∅

∅

{�p}

{�p}

{�p}

{p}

{�p,

p}

{�p}

p

Figure A.4: Formula graph and Muller automaton for 2p.

∅

true

∅

4

(a)

∅

true true

∅

∅

∅

1 2 3

5

∅

true

4

true

∅

false

false

∅ ∅

∅

true

∅

∅

true

3

5

true

true

(b)

false

true

∅

∅

∅

∅ ∅

∅

∅ {�p}

∅ {�p}

∅ {p}

∅ {�p}

p}
{�p,∅

¬p

{�p}

Figure A.5: Formula graph and Muller automaton for ¬2p.

152 Appendix A

true true

true

∅

∅

∅

falsetrue

v}

false

∅

∅

∅

∅

∅

∅

∅

false false

true false

{v}

∅

∅

∅

∅

∅

12

3

4

5

{v}

∅

∅

∅

{v}

false

∅

∅
v}

true

false false

∅

∅

v}

{v}

{v}

∅

9

true true

∅∅

∅

∅

true

{v}

10

∅

{v}

true

∅

falsefalse

∅ ∅

∅ ∅

{v}

false

∅

∅

false

{v} {v}

v}
∅

∅

∅

∅

∅

∅

∅

∅

∅

true

false

true

false

false true

∅

(a)

6

7

8

{v}

false false

{v}

∅

∅

falsefalse

∅

∅

∅

{v}

∅

{v}

∅ ∅

true true

{�[p]
v
}

{�[p]
v
}

{�[p]
v
}

{�[p]
v
,

p}

{�[p]
v
}

{�[p]
v
,

{�[p]
v
}

{�[p]
v
}

{�[p]
v
,

{�[p]
v
,

p}

{�[p]
v
,

p}

{�[p]
v
}

{v, p}

{�[p]
v
}

{�[p]
v
}

{p}

{�[p]
v
}

{�[p]
v
,

v}

{�[p]
v
}

{�[p]
v
}

{�[p]
v
,

{�[p]
v
}

{�[p]
v
}

{�[p]
v
,

v}

{�[p]
v
}

{�[p]
v
,

v, p}

{�[p]
v
}

(b)

17

10

15

8

3

¬v

p, v

v

p

15

1412

11 13

1716

{�[p]
v
}

v

v p

p

p,¬v

¬v

p

p, v

{�[p]
v
} {p}

{p}

{�[p]
v
}

{�[p]
v
}

{�[p]
v
,

{�[p]
v
,

Figure A.6: Formula graph and Muller automaton for 2[p]v.

Automata generation 153

true true

true

true

true

∅∅

falsetruefalse

false

∅

∅

true

false false

∅

∅

∅

∅

false

∅ ∅

∅ ∅

true

false

∅ ∅

∅∅

∅ ∅

true false

∅

∅

falsetrue

∅

true

false

true

∅

false

∅{v}

∅ ∅

∅ ∅

false true

∅ ∅

∅∅

(a)

∅

∅

true

(b)

12

3 8

13

4 9

5 10

6 11

false7 12

12

13 4

10 6

7

true

true

true

∅

∅

{v} ∅

{�[p]
v
}

{v, p} ∅

{�[p]
v
}

∅

∅

{�[p]
v
}

{�[p]
v
}

∅

∅

v}

{�[p]
v
,

{p}{p} {v}

{♦〈p〉v}∅

∅∅ {v}

∅

v, p}

∅

{v}

{v}

{�[p]
v
,

∅ {p}

{v}

{v}∅

{�[p]
v
}

{v} ∅

{v}

p}

{�[p]
v
,

∅ {v}

{v} ∅

{v}∅

¬p, v

¬v

¬p,¬v

v

Figure A.7: Formula graph and Muller automaton for ¬2[p]v .

154 Appendix A

Appendix B

PreDiaG

B.1 Architecture

There are four main components of PreDiaG: Front-end, Abstract states gen-

erator, Rewriting engine and Output generator. Each of these components

will be briefly discussed in the sequel.

Generator

Abstract
states
Generator

Rewriting
Engine

Rule−
base

MONA

.pro, .dot

Output

.tla, .prd, .rew

Fr
on

t−
E

nd

Figure B.1: Architecture of PreDiaG.

1. Front-end

This component receives the input files from the user. It gives the in-

formation extracted from .tla and .prd to the abstract states generator,

whereas the information extracted from .rew file will be given to the

rewriting engine component. From the output generator it receives the

155

156 Appendix B

representations of the generated predicate diagrams as Promela code

and as .dot file.

2. Abstract states generator

This component receives the abstract specification and the state pred-

icates declaration from the Front-end component. It generates the ab-

stract states and gives the result to the output generator. We use the

tool MONA [61] for the generation of the abstract states. This compo-

nent gives the results of simplification process and the constraints to

MONA and receives the abstract states that satisfy those formulas.

3. Rewriting engine

This component receives a set of rewriting rules from the Front-end

component and stores them in a table (rule-base). During the gen-

eration process this module receives formulas from the Abstract state

generator, simplifies the formulas using the rewriting rules in rule-base

and give the simplified formulas to the Abstract state generator.

4. Output generator

This component consists of two modules: the module that produces

the representation of predicate diagram as .dot file and the module that

produces the representation of predicate diagram in Promela language

.pro. These two modules then give the produced representations to

Front-End component.

B.2 Input-Output

In order to generate the predicate diagrams, this tool needs three input files,

namely: specification file (.tla), state predicate declaration file (.prd) and

rewriting rules file (.rew).

The first output of this tool is the representation of predicate diagrams

in Promela (.pro) and the second output is the graphical representation of

predicate diagrams (.dot).

Assume we have specification Spec ≡ Init ∧ 2[Next]v ∧ L and we want

to generate the predicate diagram that conforms to Init ∧ 2[Next]v using

PreDiaG. Then the specification file should contains Init and every action

formula which appears as disjunct in Next . The predicate file should contain

a list of predicates in P and a list of constraints we will use. The rewriting

rules file may contain a list of abstraction function and a list of rewriting

rules.

PreDiaG 157

B.3 Examples

B.3.1 AnyY problem

In the case of AnyY problem, we use the AnyY.tla, AnyY.prd and AnyY.rew as

specification, predicate and rewriting rules files. The content of those files are

shown in Figure B.2, Figure B.3 and Figure B.4. Figure B.5 is the graphical

representation of the resulted diagram for this problem.

------ MODULE AnyY ------

Init == /\ x = 0

/\ y = 0

P1 == /\ x = 0

/\ y’ = y + 1

/\ x’ = x

P2 == /\ x = 0

/\ x’ = 1

/\ y’ = y

=========================

Figure B.2: Specification file: AnyY.tla

B.3.2 Bakery algorithm

The input files for the Bakery algorithm are Bakery.tla, Bakery.prd and Bak-

ery.rew which are shown in Figure B.6, B.8 and B.9, respectively. The gen-

erated predicate diagram for Bakery is given in Figure B.10.

158 Appendix B

(* state predicates *)

a1 == ax = 0

a2 == ax = 1

a3 == ay = zero

a4 == ay = pos

(* constraints *)

a1 <=> ~(a2)

a3 <=> ~(a4)

Figure B.3: Predicate file: AnyY.prd.

(* abstraction function *)

x = 0 => ax = 0

x’ = 1 => ax’ = 1

x’ = x => ax’ = ax

y = 0 => ay = zero

y’ = y + 1 => ay’ = ay + 1

y’ = y => ay’ = ay

(* rewrite rules *)

zero + 1 => pos

pos + 1 => pos

0 = 0 => true

0 = 1 => false

1 = 0 => false

1 = 1 => true

zero = zero => true

zero = pos => false

pos = zero => false

pos = pos => maybe

~(true) => false

~(false) => true

Figure B.4: Rewriting file: AnyY.rew.

PreDiaG 159

p1p3

p1p4

P1

p2p3

P2

P1

p2p4

P2

Figure B.5: Output file: AnyY.dot.

160 Appendix B

------ MODULE Bakery ------
Init == /\ pc1 = 0

/\ pc2 = 0
/\ t1 = 0
/\ t2 = 0

NC1 == /\ pc1 = 0
/\ pc1’ = 1
/\ pc2’ = pc2
/\ t1’ = t1
/\ t2’ = t2

R1 == /\ pc1 = 1
/\ pc1’ = 2
/\ t1’ = t2 + 1
/\ pc2’ = pc2
/\ t2’ = t2

T1 == /\ pc1 = 2
/\ t2 = 0
/\ pc1’ = 3
/\ pc2’ = pc2
/\ t1’ = t1
/\ t2’ = t2

T11 == /\ pc1 = 2
/\ t1 <= t2
/\ pc1’ = 3
/\ pc2’ = pc2
/\ t1’ = t1
/\ t2’ = t2

C1 == /\ pc1 = 3
/\ pc1’ = 4
/\ pc2’ = pc2
/\ t1’ = t1
/\ t2’ = t2

E1 == /\ pc1 = 4
/\ pc1’ = 0
/\ t1’ = 0
/\ pc2’ = pc2
/\ t2’ = t2

Figure B.6: Specification file: Bakery.tla.

PreDiaG 161

NC2 == /\ pc2 = 0
/\ pc2’ = 1
/\ pc1’ = pc1
/\ t1’ = t1
/\ t2’ = t2

R2 == /\ pc2 = 1
/\ pc2’ = 2
/\ t2’ = t1 + 1
/\ pc1’ = pc1
/\ t1’ = t1

T2 == /\ pc2 = 2
/\ t1 = 0
/\ pc2’ = 3
/\ pc1’ = pc1
/\ t1’ = t1
/\ t2’ = t2

T21 == /\ pc2 = 2
/\ ~(t1 <= t2)
/\ pc2’ = 3
/\ pc1’ = pc1
/\ t1’ = t1
/\ t2’ = t2

C2 == /\ pc2 = 3
/\ pc2’ = 4
/\ pc1’ = pc1
/\ t1’ = t1
/\ t2’ = t2

E2 == /\ pc2 = 4
/\ pc2’ = 0
/\ t2’ = 0
/\ pc1’ = pc1
/\ t1’ = t1

=========================

Figure B.7: Specification file: Bakery.tla (continued).

162 Appendix B

(* state predicates *)
p1 == apc1 = 0
p2 == apc1 = 1
p3 == apc1 = 2
p4 == apc1 = 3
p5 == apc1 = 4
p6 == apc2 = 0
p7 == apc2 = 1
p8 == apc2 = 2
p9 == apc2 = 3
p10 == apc2 = 4
p11 == at1 = zero
p12 == at1 = pos
p13 == at2 = zero
p14 == at2 = pos

(* constraints *)
p1 <=> ~(p2 \/ p3 \/ p4 \/ p5)
p2 <=> ~(p1 \/ p3 \/ p4 \/ p5)
p3 <=> ~(p2 \/ p1 \/ p4 \/ p5)
p4 <=> ~(p2 \/ p3 \/ p1 \/ p5)
p5 <=> ~(p2 \/ p3 \/ p4 \/ p1)
p6 <=> ~(p7 \/ p8 \/ p9 \/ p10)
p7 <=> ~(p6 \/ p8 \/ p9 \/ p10)
p8 <=> ~(p7 \/ p6 \/ p9 \/ p10)
p9 <=> ~(p7 \/ p8 \/ p6 \/ p10)
p10 <=> ~(p7 \/ p8 \/ p9 \/ p6)
p11 <=> ~(p12)
p13 <=> ~(p14)

Figure B.8: Predicate file: Bakery.prd.

PreDiaG 163

(* abstraction function *)
pc1 => apc1
pc1’ => apc1’
pc2 => apc2
pc2’ => apc2’
t1 = 0 => at1 = zero
t2 = 0 => at2 = zero
t1’ = 0 => at1’ = zero
t2’ = 0 => at2’ = zero
t1’ = t1 => at1’ = at1
t2’ = t2 => at2’ = at2
t1’ = t2 + 1 => at1’ = at2 + 1
t1 <= t2 => at1 <= at2
t2’ = t1 + 1 => at2’ = at1 + 1
~(t1 <= t2) => ~(at1 <= at2)

(* rewrite rules *)
zero + 1 => pos
pos + 1 => pos
0 = 0 => true
0 = 1 => false
0 = 2 => false
0 = 3 => false
0 = 4 => false
1 = 0 => false
1 = 1 => true
1 = 2 => false
1 = 3 => false
1 = 4 => false
2 = 0 => false
2 = 1 => false
2 = 2 => true
2 = 3 => false
2 = 4 => false
3 = 0 => false
3 = 1 => false
3 = 2 => false
3 = 3 => true
3 = 4 => false
4 = 0 => false
4 = 1 => false
4 = 2 => false
4 = 3 => false
4 = 4 => true
zero = zero => true
zero = pos => false
pos = zero => false
pos = pos => maybe
zero <= zero => true
zero <= pos => true
pos <= zero => false
pos <= pos => maybe

Figure B.9: Rewriting file: Bakery.rew.

164 Appendix B

p1p6p11p13

p2p6p11p13

NC1

p1p7p11p13

NC2

p3p6p12p13

R1

p2p7p11p13

NC2

NC1

p1p8p11p14

R2

p4p6p12p13

T1

p3p7p12p13

NC2

R1

p2p8p11p14

R2

NC1

p1p9p11p14

T2

p5p6p12p13

C1

p4p7p12p13

NC2

T1

p3p8p12p14

R2

R1

p2p9p11p14

T2

NC1

p1p10p11p14

C2

E1

p5p7p12p13

NC2

C1

p4p8p12p14

R2

T11

p3p9p12p14

T21

R1

p2p10p11p14

C2

E2

NC1

E1

p5p8p12p14

R2

C1

p4p9p12p14

T21

T11

p3p10p12p14

C2

E2

R1

E1

p5p9p12p14

T21

C1

p4p10p12p14

C2

E2

T11

E1

p5p10p12p14

C2

E2

C1

E2

E1

Figure B.10: Output file: Bakery.dot.

Appendix C

parPreDiaG

C.1 Architecture

There are three main components of parPreDiaG: Front-end, Abstract states

generator and Output generator. The function of each component is similar

to the one of PreDiaG.

Generator

.pro, .dot

Output

Fr
on

t−
E

nd

Abstract
states
Generator

MONA

.spc, .prd

Figure C.1: Architecture of parPreDiaG.

C.2 Input and output

Two files are needed in order to generate ppds using parPreDiaG: specifica-

tion and description files. The specification file should contain a list of action

formulas written in the input language of MONA and the main body of the

program. The second input file, the predicate file contains a list of abstract

variables, an initial condition, a list of formulas representing the quantified

165

166

list of action formulas
...

main body of the program
...

Figure C.2: The template of specification files.

list of predicate names
...

initial condition formula
...

list of actions
...

list of constrains
...

Figure C.3: Template for predicate file.

actions and a list of constraints. The templates of these files are given in

Figure C.2 and C.3 in Appendix C.

The out files produced by ParPrediag are the representation of ppds

Promela (.pro) and the graphical representation of ppds (.dot).

C.3 Example: Tickets protocol

The input files for Tickets protocol are Tickets.spc and Tickets.prd which are

shown in Figure C.4 and Figure C.5.

The resulted ppd is given in Figure C.3. Notice that every edge is labeled

by action name A1..A6. Every action name corresponds to some action de-

clared in the predicate file. The index of every action name represents the

appearance order of its corresponding quantified action in the declaration, for

example A1 represents the action formula Request(k ,PC 1,PC 2,PC 3,PC 1′,

PC 2′,PC 3′) and A6 represents the formula (ex1k : (k ∼= i&Release(k ,PC 1,

PC 2,PC 3,PC 1′,PC 2′,PC 3′))).

parPreDiaG 167

(* predicates declaration *)

p1

p2

p3

p4

p5

(* initial condition *)

i in PC1 & PC1 \ {i} ~= {} & PC2 = {} & PC3={}

(* transitions *)

Request(i, PC1, PC2, PC3, PC1’, PC2’, PC3’)

Grant(i, PC1, PC2, PC3, PC1’, PC2’, PC3’)

Release(i, PC1, PC2, PC3, PC1’, PC2’, PC3’)

(ex1 k:(k~=i & Request(k, PC1, PC2, PC3, PC1’, PC2’, PC3’)))

(ex1 k:(k~=i & Grant(k, PC1, PC2, PC3, PC1’, PC2’, PC3’)))

(ex1 k:(k~=i & Release(k, PC1, PC2, PC3, PC1’, PC2’, PC3’)))

(* abstractions *)

(p1 <=> i in PC1)

(p2 <=> i in PC2)

(p3 <=> i in PC3)

(p4 <=> all1 j,k: j in PC3 & k in PC3 => j=k)

(p5 <=> PC3 ~= {})

(p1’ <=> i in PC1’)

(p2’ <=> i in PC2’)

(p3’ <=> i in PC3’)

(p4’ <=> all1 j,k: j in PC3’ & j in PC3’ => j=k)

(p5’ <=> PC3’ ~= {})

Figure C.4: Predicate file: Tickets.prd.

168

pred Request(var1 k, var2 PC1,PC2,PC3,PC1’,PC2’,PC3’) =

k in PC1 & PC1’=PC1\{k} & PC3’=PC3 & PC2’=PC2 union {k};

pred Grant(var1 k, var2 PC1,PC2,PC3,PC1’,PC2’,PC3’) =

k in PC2 & PC3={} & PC2’=PC2\{k} & PC3’=PC3 union {k} &

PC1’=PC1;

pred Release(var1 k, var2 PC1,PC2,PC3,PC1’,PC2’,PC3’) =

k in PC3 & PC3’=PC3\{k} & PC1’=PC1 union {k} & PC2’ = PC2;

ex1 i: ex2 PC1, PC2, PC3, PC1’, PC2’, PC3’: (

true

inserted codes

);

Figure C.5: Specification file: Tickets.spc.

p1p4 A4

p2p4

A1

p1p4p5

A5

A4

p3p4p5

A2

p2p4p5

A5

A6

A4

A1

A3

A4

A6

A4

Figure C.6: Output file: Tickets.dot.

Acknowledgment

I am very grateful to my Doktorvater Prof. Dr. Fred Kröger for giving

me the opportunity to work at the institute. Thanks for guiding me along

the way, especially in the last two years. My special thanks also go to my

zweiter Betreuer Dr. Stephan Merz for his excellent supervision. His endless

constructive input have had a major impact on this thesis. It was really a

privilege for me to work with them.

I am also indebted to Prof. Wirsing for the recommendations and the

financial support that enabled me to attend some advanced courses related

to the topic of this thesis. Herzlichen Dank!

A part of my tools was developed during my stay at the Department of

Computering Science, Université Henri Poincaré in Nancy, France. I thank

Prof. Dominique Méry, Dr. Dominique Cansell and Dr. Dennis Roegel for

the assistance. Merci!

Financially, my work was supported by a scholarship of DAAD whose

generosity is gratefully acknowledged.

I would also like to thank Dr.dr. Oerip S. Santosa MSc. for introducing

me to temporal logics; Dr. A. Rusli and Rosa de Lima Ssi. MT. for un-

derstanding me every time I changed my schedule; and all the people at the

Faculty of Mathematics and Natural Sciences, Universitas Katolik Parahyan-

gan, Bandung, Indonesian, for their continuous supports. Terima kasih!

I would like to thank all the members of the Hans-Sachs-Ring community

for the wonderful friendship. Especially, I thank Dr. Hesti Wulandari for

pulling me through several times at critical moments when I was ready to

give up. Matur nuwun!

Although far away, my mother, sister, brothers and in-laws were always

there and I thank them for their constant prayer, love and encouragement.

Last, my thanks go to my husband who took over all my responsibilities

(except this work). Thanks for standing by me and supporting me through-

out the years. You’re the best!

169

170

Lebenslauf

Name Cecilia Esti Nugraheni
Geburtsdatum 27. November 1969
Geburtsort Surakarta-Indonesien
Familienstand verheiratet (seit 30. März 1999)
Staatsangehörigkeit indonesisch

Schulausbilding 1976 - 1982
staatliche Volkschule 88, Surakarta-Indonesien
1982 - 1985
staatliche Mittelschule 1, Surakarta-Indonesien
1985 - 1988
staatliche Oberschule 1, Surakarta-Indonesien

Hochschulausbildung 1988 - 1993
Studium der Informatik am Institut Teknologi
Bandung, Bandung-Indonesien (Diplom)
1995 - 1997
Studium der Informatik am Institut Teknologi
Bandung, Bandung-Indonesien (Master)

Promotion Beginn Oktober 1999 der vorliegenden Disser-
tation am Institut für Informatik, Lehrstuhl
für Programmierung und Softwaretechnik der
Ludwig-Maximilians Universität.

171

	Abstract
	Zusammenfassung
	Contents
	List of figures
	Introduction
	Classification of reactive systems
	Formal specification and verification
	Verification techniques
	Abstraction
	Diagram-based verification
	Scope of the thesis
	Chapter outlined

	Preliminaries
	Overview
	Set Notation
	Strings and languages
	Graphs
	Classical logic
	Propositional logic
	Syntax
	Semantics

	First order logic
	Syntax
	Semantics

	Properties and Temporal Logic
	Overview
	Properties of reactive systems
	Safety properties
	Liveness properties
	Specification

	TLA*
	Propositional TLA* (pTLA*)
	Syntax
	Semantics
	Stuttering invariance

	Quantified TLA* (qpTLA*)
	Syntax
	Semantics

	First order TLA*
	Syntax
	Semantics

	Specifications
	Machine closed

	Writing specifications
	Remarks

	Automata on infinite words
	Overview
	Muller automata
	From pTLA* to Muller-automata
	Graph construction
	Automaton definition
	Proof of correctness

	Timed automata
	Discussion and related work

	Discrete systems
	Overview
	Specification
	Predicate diagrams
	Verification
	Conformance
	Model checking predicate diagrams

	An example: Bakery algorithm
	Completeness of predicate diagrams
	Discussion and related work

	Real time systems
	Overview
	Specification
	Timed predicate diagrams
	Verification
	Relating specifications and TPDs
	Model checking TPDs

	An example: Fischer's protocol
	Discussions and related work

	Parameterized systems
	Overview
	Specification
	Tickets protocol: a case study
	Verification using predicate diagrams
	Parameterized predicate diagrams
	Discussion and related work

	Generation of diagrams
	Overview
	Generation of predicate diagrams
	Nodes
	Abstract interpretation
	Abstract evaluation of an action
	Maybe edges

	Generation of PPDs
	Discussion and related work

	Conclusion and future work
	Bibliography
	Automata generation
	PreDiaG
	Architecture
	Input-Output
	Examples
	AnyY problem
	Bakery algorithm

	parPreDiaG
	Architecture
	Input and output
	Example: Tickets protocol

	Acknowledgement
	Lebenslauf

