12 research outputs found

    Tackling tumour cell heterogeneity at the super-resolution level in human colorectal cancer tissue

    Get PDF
    Tumour cell heterogeneity, and its early individual diagnosis, is one of the most fundamental problems in cancer diagnosis and therapy. Single molecule localisation microscopy (SMLM) resolves subcellular features but has been limited to cultured cell lines only. Since nuclear chromatin architecture and microRNAs are critical in metastasis, we introduce a first-in-field approach for quantitative SMLM-analysis of chromatin nanostructure in individual cells in resected, routine-pathology colorectal carcinoma (CRC) patient tissue sections. Chromatin density profiles proved to differ for cells in normal and carcinoma colorectal tissues. In tumour sections, nuclear size and chromatin compaction percentages were significantly different in carcinoma versus normal epithelial and other cells of colorectal tissue. SMLM analysis in nuclei from normal colorectal tissue revealed abrupt changes in chromatin density profiles at the nanoscale, features not detected by conventional widefield microscopy. SMLM for microRNAs relevant for metastasis was achieved in colorectal cancer tissue at the nuclear level. Super-resolution microscopy with quantitative image evaluation algorithms provide powerful tools to analyse chromatin nanostructure and microRNAs of individual cells from normal and tumour tissue at the nanoscale. Our new perspectives improve the differential diagnosis of normal and (metastatically relevant) tumour cells at the single-cell level within the heterogeneity of primary tumours of patients

    True-to-scale DNA-density maps correlate with major accessibility differences between active and inactive chromatin

    No full text
    Summary: Chromatin compaction differences may have a strong impact on accessibility of individual macromolecules and macromolecular assemblies to their DNA target sites. Estimates based on fluorescence microscopy with conventional resolution, however, suggest only modest compaction differences (∼2–10×) between the active nuclear compartment (ANC) and inactive nuclear compartment (INC). Here, we present maps of nuclear landscapes with true-to-scale DNA densities, ranging from 300 Mbp/μm3. Maps are generated from individual human and mouse cell nuclei with single-molecule localization microscopy at ∼20 nm lateral and ∼100 nm axial optical resolution and are supplemented by electron spectroscopic imaging. Microinjection of fluorescent nanobeads with sizes corresponding to macromolecular assemblies for transcription into nuclei of living cells demonstrates their localization and movements within the ANC and exclusion from the INC

    DNA methylation profiles of bronchoscopic biopsies for the diagnosis of lung cancer

    No full text
    Background!#!Lung cancer is the leading cause of cancer-related death in most western countries in both, males and females, accounting for roughly 20-25% of all cancer deaths. For choosing the most appropriate therapy regimen a definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methylation analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at comparing aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens.!##!Results!#!We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with definite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classified with high accuracy.!##!Conclusions!#!Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer even in histologically ambiguous sample material
    corecore