16 research outputs found

    Assessment of Genetic Variation and Population Structure of Diverse Rice Genotypes Adapted to Lowland and Upland Ecologies in Africa Using SNPs

    Get PDF
    Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several 'New Rice for Africa (NERICA)' improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (FST = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm

    Oryza glaberrima Steud.

    No full text
    Oryza glaberrima is the African cultivated rice species, domesticated from its wild ancestor by farmers living in Inland Delta of Niger River. Several studies indicated that it has extremely narrow genetic diversity compared to both its wild progenitor, Oryza barthii and the Asian rice, Oryza sativa which can mainly be attributed to a severe domestication bottleneck. Despite its scarcity in farmer's field due to its low yield potential, high shattering and lodging susceptibility, O. glaberrima is of great value not only to Africa but also globally. Perhaps its greatest contribution to regional and global food security is as a source of genes, as it possesses resistance/tolerance to various biotic and abiotic stresses. It also has unique starch-related traits which give it good cooking and eating properties. Advances in DNA sequencing have provided useful genomic resources for African rice, key among them being whole genome sequences. Genomic tools are enabling greater understanding of the useful functional diversity found in this species. These advances have potential of addressing some of the undesirable attributes found in this species which have led to its continued replacement by Asian rice. Development of new generation of rice varieties for African farmers will therefore require the adoption of advanced molecular breeding tools as these will allow efficient utilization of the wealth and resilience found in African rice in rice improvement

    Assessment of Genetic Variation and Population Structure of Diverse Rice Genotypes Adapted to Lowland and Upland Ecologies in Africa Using SNPs

    No full text
    Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA)’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance &gt; 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by &lt;2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (FST = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P &lt; 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm

    Genetic variation and population structure of Oryza glaberrima and development of a mini-core collection using DArTseq

    No full text
    The sequence variation present in accessions conserved in genebanks can best be used in plant improvement when it is properly characterized and published. Using low cost and high density single nucleotide polymorphism (SNP) assays, the genetic diversity, population structure, and relatedness between pairs of accessions can be quickly assessed. This information is relevant for different purposes, including creating core and mini-core sets that represent the maximum possible genetic variation contained in the whole collection. Here, we studied the genetic variation and population structure of 2,179 Oryza glaberrima Steud. accessions conserved at the AfricaRice genebank using 27,560 DArTseq-based SNPs. Only 14% (3,834 of 27,560) of the SNPs were polymorphic across the 2,179 accessions, which is much lower than diversity reported in other Oryza species. Genetic distance between pairs of accessions varied from 0.005 to 0.306, with 1.5% of the pairs nearly identical, 8.0% of the pairs similar, 78.1% of the pairs moderately distant, and 12.4% of the pairs very distant. The number of redundant accessions that contribute little or no new genetic variation to the O. glaberrima collection was very low. Using the maximum length sub-tree method, we propose a subset of 1,330 and 350 accessions to represent a core and mini-core collection, respectively. The core and mini-core sets accounted for similar to 61 and 16%, respectively, of the whole collection, and captured 97-99% of the SNP polymorphism and nearly all allele and genotype frequencies observed in the whole O. glaberrima collection available at the AfricaRice genebank. Cluster, principal component and model-based population structure analyses all divided the 2,179 accessions into five groups, based roughly on country of origin but less so on ecology. The first, third and fourth groups consisted of accessions primarily from Liberia, Nigeria, and Mali, respectively; the second group consisted primarily of accessions from Togo and Nigeria; and the fifth and smallest group was a mixture of accessions from multiple countries. Analysis of molecular variance showed between 10.8 and 28.9% of the variation among groups with the remaining 71.1-89.2% attributable to differences within groups

    Table_1.xlsx

    No full text
    <p>Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA)’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (F<sub>ST</sub> = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm.</p

    Table_7.XLSX

    No full text
    <p>Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA)’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (F<sub>ST</sub> = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm.</p

    Table_6.XLSX

    No full text
    <p>Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA)’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (F<sub>ST</sub> = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm.</p

    Image_1.PDF

    No full text
    <p>Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA)’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (F<sub>ST</sub> = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm.</p

    Table_5.XLSX

    No full text
    <p>Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several ‘New Rice for Africa (NERICA)’ improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as ‘Advanced Rice for Africa (ARICA)’. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (F<sub>ST</sub> = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm.</p
    corecore