406 research outputs found

    Neutron and gamma ray production in the 1991 June X-class flares

    Get PDF
    We present new calculations of pion radiation and neutron emission from solar flares. We fit the recently reported high energy GAMMA-1 observations with pion radiation produced in a solar flare magnetic loop. We calculate the expected neutron emission in such a loop model and make predictions of the neutron fluences expected from the 1991 June X-class flares

    Attractive instability of oppositely charged membranes induced by charge density fluctuations

    Full text link
    We predict the conditions under which two oppositely charged membranes show a dynamic, attractive instability. Two layers with unequal charges of opposite sign can repel or be stable when in close proximity. However, dynamic charge density fluctuations can induce an attractive instability and thus facilitate fusion. We predict the dominant instability modes and timescales and show how these are controlled by the relative charge and membrane viscosities. These dynamic instabilities may be the precursors of membrane fusion in systems where artificial vesicles are engulfed by biological cells of opposite charge

    Effect of an electric field on nucleation and growth of crystals

    Get PDF
    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH[4]Cl and NH[4]Br crystals was found to be 15 kV/cm, and for NH[4]I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested

    Identifying gravity waves launched by the Hunga Tonga-Hunga Ha‘apai volcanic eruption in mesosphere/lower thermosphere winds derived from CONDOR and the Nordic Meteor Radar Cluster

    Get PDF
    The Hunga Tonga-Hunga Ha‘apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower thermosphere (MLT) launched by the volcanic explosion in the Pacific leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found an eastward and a westward traveling gravity wave in the CONDOR zonal and meridional wind measurements, which arrived 12 hours and 48 hours after the eruption, and one in Nordic Meteor Radar Cluster that arrived 27.5 hours after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m/s and 170–150 m/s for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m/s. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 minute resolved 3DVAR+DIV retrievals

    A reaction-diffusion model for the growth of avascular tumor

    Full text link
    A nutrient-limited model for avascular cancer growth including cell proliferation, motility and death is presented. The model qualitatively reproduces commonly observed morphologies for primary tumors, and the simulated patterns are characterized by its gyration radius, total number of cancer cells, and number of cells on tumor periphery. These very distinct morphological patterns follow Gompertz growth curves, but exhibit different scaling laws for their surfaces. Also, the simulated tumors incorporate a spatial structure composed of a central necrotic core, an inner rim of quiescent cells and a narrow outer shell of proliferating cells in agreement with biological data. Finally, our results indicate that the competition for nutrients among normal and cancer cells may be a determinant factor in generating papillary tumor morphology.Comment: 9 pages, 6 figures, to appear in PR

    Identifying gravity waves launched by the Hunga Tonga–Hunga Ha′apai volcanic eruption in mesosphere/lower-thermosphere winds derived from CONDOR and the Nordic Meteor Radar Cluster

    Get PDF
    The Hunga Tonga–Hunga Ha′apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower-thermosphere (MLT) launched by the volcanic explosion in the Pacific, leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found eastward- and westward-traveling gravity waves in the CONDOR zonal and meridional wind measurements, which arrived 12 and 48 h after the eruption, and we found one in the Nordic Meteor Radar Cluster that arrived 27.5 h after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m s−1, and they were 170–150 m s−1 for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m s−1. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 min resolved 3DVAR+DIV retrievals.</p

    Predicting Impaired Extinction of Traumatic Memory and Elevated Startle

    Get PDF
    Emotionally traumatic experiences can lead to debilitating anxiety disorders, such as phobias and Post-Traumatic Stress Disorder (PTSD). Exposure to such experiences, however, is not sufficient to induce pathology, as only up to one quarter of people exposed to such events develop PTSD. These statistics, combined with findings that smaller hippocampal size prior to the trauma is associated with higher risk of developing PTSD, suggest that there are pre-disposing factors for such pathology. Because prospective studies in humans are limited and costly, investigating such pre-dispositions, and thus advancing understanding of the genesis of such pathologies, requires the use of animal models where predispositions are identified before the emotional trauma. Most existing animal models are retrospective: they classify subjects as those with or without a PTSD-like phenotype long after experiencing a traumatic event. Attempts to create prospective animal models have been largely unsuccessful.Here we report that individual predispositions to a PTSD-like phenotype, consisting of impaired rate and magnitude of extinction of an emotionally traumatic event coupled with long-lasting elevation of acoustic startle responses, can be revealed following exposure to a mild stressor, but before experiencing emotional trauma. We compare, in rats, the utility of several classification criteria and report that a combination of criteria based on acoustic startle responses and behavior in an anxiogenic environment is a reliable predictor of a PTSD-like phenotype.There are individual predispositions to developing impaired extinction and elevated acoustic startle that can be identified after exposure to a mildly stressful event, which by itself does not induce such a behavioral phenotype. The model presented here is a valuable tool for studying the etiology and pathophysiology of anxiety disorders and provides a platform for testing behavioral and pharmacological interventions that can reduce the probability of developing pathologic behaviors associated with such disorders

    On the Origin of Cosmic Magnetic Fields

    Full text link
    We review the literature concerning how the cosmic magnetic fields pervading nearly all galaxies actually got started. some observational evidence involves the chemical abundance of the light elements Be and B, while another one is based on strong magnetic fields seen in high red shift galaxies. Seed fields, whose strength is of order 10^{-20} gauss, easily sprung up in the era preceding galaxy formation. Several mechanisms are proposed to amplify these seed fields to microgauss strengths. The standard mechanism is the Alpha-Omega dynamo theory. It has a major difficulty that makes unlikely to provide the sole origin. The difficulty is rooted in the fact that the total flux is constant. This implies that flux must be removed from the galactic discs. This requires that the field and flux be separated, for otherwise interstellar mass must be removed from the deep galactic gravitational and then their strength increased by the alpha omega theory.Comment: 90 pages and 6 figures; accepted for publication in Reports of Progress in Physics as an invited revie
    corecore