91 research outputs found

    Use of Microwave Radiometry to Monitor Thermal Denaturation of Albumin

    Get PDF
    This study monitored thermal denaturation of albumin using microwave radiometry. Brightness Temperature, derived from Microwave Emission (BTME) of an aqueous solution of bovine serum albumin (0.1 mM) was monitored in the microwave frequency range 3.8–4.2 GHz during denaturation of this protein at a temperature of 56°C in a conical polypropylene cuvette. This method does not require fluorescent or radioactive labels. A microwave emission change of 1.5–2°C in the BTME of aqueous albumin solution was found during its denaturation, without a corresponding change in the water temperature. Radio thermometry makes it possible to monitor protein denaturation kinetics, and the resulting rate constant for albumin denaturation was 0.2 ± 0.1 min−1, which corresponds well to rate constants obtained by other methods

    Laser doppler spectrum decomposition applied in diagnostics of microcirculatory disturbances

    Get PDF
    Laser Doppler flowmetry (LDF) is widely used to study blood microcirculation in the skin. However, during tradition signal processing based on the integral estimations of the power spectrum of detector photocurrent, the significant part of the information about the skin blood ow is lost. In this study, we propose to analyse the distribution of the blood perfusion over the Doppler shift frequencies, which correlate with the RBC velocity. This approach provides localisation of the blood ow oscillations in different subranges of the Doppler shift. The method applied together with the wavelet analysis has been tested in healthy volunteers and patients with psoriasis on the unaffected surface of the skin. It was revealed, that the significant difference in the amplitude of myogenic oscillations is allocated in the region of the low frequency Doppler shift (1-200 Hz). This frequency region can be associated with the signal from slow components of the skin microcirculation, that can point out on a different state of the lymphatic system of the skin in psoriasis

    Wearable laser Doppler sensors for evaluating the nutritive and shunt blood flow

    Get PDF
    This study is devoted to the trials of wearable diagnostic system that implements the laser Doppler flowmetry technique to analyse the blood microcirculation. We do preliminary test with involvement of limited group of healthy volunteers of different age and in patients with type 2 diabetes. During the series of measurements, the microcirculation parameters was measured for 10 minutes in the palmar surfaces of the big toes and in the inner sides of the upper thirds of the shins. A statistically significant differences was found in bypass index, nutritive and shunt blood ow in shins between older group of volunteers and patients' group as well as in shunt blood flow in fingers between younger and older groups of volunteers

    Tunneling-assisted impact ionization fronts in semiconductors

    Get PDF
    We propose a novel type of ionization front in layered semiconductor structures. The propagation is due to the interplay of band-to-band tunneling and impact ionization. Our numerical simulations show that the front can be triggered when an extremely sharp voltage ramp (10kV/ns\sim 10 {\rm kV/ns}) is applied in reverse direction to a Si p+nn+p^+-n-n^+-structure that is connected in series with an external load. The triggering occurs after a delay of 0.7 to 0.8 ns. The maximal electrical field at the front edge exceeds 106V/cm10^6 {\rm V/cm}. The front velocity vfv_f is 40 times faster than the saturated drift velocity vsv_s. The front passes through the nn-base with a thickness of 100μm100 {\mu m} within approximately 30 ps, filling it with dense electron-hole plasma. This passage is accompanied by a voltage drop from 8 kV to dozens of volts. In this way a voltage pulse with a ramp up to 500kV/ns500 {\rm kV/ns} can be applied to the load. The possibility to form a kilovolt pulse with such a voltage rise rate sets new frontiers in pulse power electronics.Comment: 12 pages, 6 figure

    Studies of age-related changes in blood perfusion coherence using wearable blood perfusion sensor system

    Get PDF
    Laser Doppler flowmetry (LDF) was used for detection of age-related changes in the blood microcirculation. The LDF signal was simultaneously recorded from the 3rd fingers' pads of both hands. Amplitudes of the blood flow oscillations and wavelet coherence of the signals were used for the data analysis. A statistical difference in the synchronisation of myogenic oscillations was found between the two studied age groups. Myogenic oscillations of blood perfusion in the younger group had a higher wavelet coherence parameter than in the older group. Observed site-specific and age-related differences in blood perfusion can be used in the future in the design of experimental studies of the blood microcirculation system in patients with different pathologies

    Peculiarities of local blood microcirculation in patients with psoriasis

    Get PDF
    Local hemodynamic parameters were studied by means of laser Doppler flowmetry in 15 patients with psoriasis in the stationary stage, who have plaques on the inner surface of the forearm. LDF signals recorded at the site of psoriatic lesions of the tissue as well as in the intact tissue at a distance of 1-2 cm from the affected area were analysed. LDF signals were postprocessed by continuous wavelet transform using the Morlet wavelet

    Wearable sensor system for multipoint measurements of blood perfusion: pilot studies in patients with diabetes mellitus

    Get PDF
    The growing interest in the development of new wearable electronic devices for mobile healthcare provides great opportunities for the development of methods for assessing blood perfusion in this direction. Laser Doppler flowmetry (LDF) is one of the promising methods. A fine analysis of capillary blood ow structure and rhythm in the time and frequency domains, coupled with a new possibility of round-the-clock monitoring can provide valuable diagnostic information about the state of microvascular blood ow. In this study, wearable implementation of laser Doppler flowmetry was utilised for microcirculatory function assessment in patients with diabetes and healthy controls of two distinct age groups. Four wearable laser Doppler flowmetry monitors were used for the analysis of blood microcirculation. Thirty-seven healthy volunteers and 18 patients with type 2 diabetes mellitus participated in the study. The results of the studies have shown that the average perfusion differs between healthy volunteers of distinct age groups and between healthy volunteers of the younger age group and patients with diabetes mellitus. It was noted that the average level of perfusion measured on the wrist in the two groups of healthy volunteers has no statistically significant differences found in similar measurements on the fingertips. The wearable implementation of LDF can become a truly new diagnostic interface to monitor cardiovascular parameters, which could be of interest for diagnostics of conditions associated with microvascular disorders

    Laser Doppler flowmetry in blood and lymph monitoring, technical aspects and analysis

    Get PDF
    The aim of this work was to study the possibilities of the laser Doppler flowmetry method for the joint study of microhaemo- and lymph circulation of human skin. Conducting a series of experimental studies allowed to trace the relationship of recorded signals of microcirculation of blood flow and lymph flow, as well as to study their oscillation nature by using wavelet analysis

    Analysis of changes in blood flow oscillations under different probe pressure using laser Doppler spectrum decomposition

    Get PDF
    Presently, in the modern laser Doppler flowmetry (LDF) the distribution of blood perfusion and its changes along the Doppler shift frequencies are simply ignored and/or not properly addressed. Utilizing the registered power spectrum of photocurrent, we introduce an LDF signal processing approach suitable for expanding of diagnostic capabilities of the technique. In particular, we demonstrate that it is possible to determine how the oscillations of blood flow (cardiac, breathe, myogenic, etc.) are distributed along the Doppler shift frequency. Wavelet analysis is utilized to extract the oscillations corresponded to the particular frequency sub-bands of blood perfusion. The main purpose of this study is to identify influence of local pressure by fiber optic probe on cardiac oscillations and their distribution along frequency of Doppler shift
    corecore