8 research outputs found

    Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions

    Get PDF
    Funding: This work is financially supported by the Shanghai Frontiers Science Center of Polar Science (SCOPS), National Natural Science Foundation of China (NSFC) for Excellent Young Scientists Fund Program (Overseas). J.C.F. has been supported by the European Community’s 7th Framework Programme FP7 2007/2013, Marie-Curie Actions (grant no. 238111).The global carbon cycle is strongly modulated by organic carbon (OC) sequestration and decomposition. Whereas the extent of OC sequestration is relatively well-constrained in marine sedimentary basins, there are few quantitative estimates of its susceptibility to decomposition. Fjords are widely distributed hotspots of sedimentation, and currently account for 11% of annual OC burial in marine sediments. Here, we adopt fjords as model systems to investigate the reactivity of sedimentary OC by assessing the distribution of the activation energy (termed E) required to break OC covalent bonds. Our results reveal that OC in fjord sediments is more labile than that in global sediments, which is governed by unique OC provenance and organo-mineral interactions. We estimated that 61±16% of the sedimentary OC in fjords is degradable. Once this OC is remobilized and remineralized during glacial periods (sea level lowstands), the CO2 produced could counterbalance up to 50 ppm of atmospheric CO2 decrease in glacial times, making fjords critical actors in dampening glacial-interglacial climate fluctuations through negative carbon cycling loops.Publisher PDFPeer reviewe

    The benthic-pelagic coupling affects the surface water carbonate system above groundwater-charged coastal sediments

    Get PDF
    Submarine groundwater discharge (SGD) can be a significant source of dissolved nutrients, inorganic and organic carbon, and trace metals in the ocean and therefore can be a driver for the benthic-pelagic coupling. However, the influence of hypoxic or anoxic SGD on the carbonate system of coastal seawater is still poorly understood. In the present study, the production of dissolved inorganic carbon (DIC) and alkalinity (AT) in coastal sediments has been investigated under the impact of oxygen-deficient SGD and was estimated based on the offset between the measured data and the conservative mixing of the end members. Production of AT and DIC was primarily caused by denitrification and sulphate reduction. The AT and DIC concentrations in SGD decreased by approximately 32% and 37% mainly due to mixing with seawater counterbalanced by reoxidation and CO2 release into the atmosphere. Total SGD-AT and SGD-DIC fluxes ranged from 0.1 to 0.2mol m-2 d-1 and from 0.2 to 0.3mol m-2 d-1, respectively. These fluxes are probably the reason why the seawater in the Bay of Puck is enriched in AT and DIC compared to the open waters of the Baltic Sea. Additionally, SGD had low pH and was undersaturated with respect to the forms of the aragonite and calcite minerals of CaCO3. The seawater of the Bay of Puck also turned out to be undersaturated in summer (Inner Bay) and fall (Outer Bay). We hypoth​e​size that SGD can potentially contribute to ocean acidification and affect the functioning of the calcifying invertebrates

    DataSheet_1_Bioavailability and remineralization rates of sediment-derived dissolved organic carbon from a Baltic Sea depositional area.docx

    No full text
    This pilot study investigated the bioavailability and remineralization kinetics of the sediment-derived dissolved organic carbon (DOC) from the Gdańsk Deep, a depositional area in the Baltic Sea. This was assessed in the long-lasting (126 d) incubation experiment, in which the mixture of DOC from sediment pore water and bottom water was exposed to oxic microbial respiration with incubation of bottom water as a control run. The obtained decay curves allowed us to distinguish three DOC fractions: labile (DOCL), semi-labile (DOCSL), and refractory (DOCR). In bottom water, the refractory fraction was predominant and amounted to almost 85% of total DOC, whereas about 15% of DOC was bioavailable: 6% labile and 9% semi-labile. In contrast, DOC from pore water was much more bioavailable DOC (~55% of total DOC) and contained 11% DOCL and 44% DOCSL. The remineralization rate constants recalculated to the in situ temperature of 6°C for labile and semi-labile DOC in pore water were 0.025 d−1 and 0.002 d−1, respectively, whereas, in bottom water, 0.026 d−1 and 0.004 d−1. The half-life times for DOCL were comparable for both bottom water and pore water and amounted to 26.2 d and 27.6 d, respectively. For DOCSL, the half-life time was shorter for bottom water (165.5 d) than for pore water (322.9 d).</p

    Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions

    No full text
    The global carbon cycle is strongly modulated by organic carbon (OC) sequestration and decomposition. Whereas the extent of OC sequestration is relatively well-constrained in marine sedimentary basins, there are few quantitative estimates of its susceptibility to decomposition. Fjords are widely distributed hotspots of sedimentation, and currently account for 11% of annual OC burial in marine sediments. Here, we adopt fjords as model systems to investigate the reactivity of sedimentary OC by assessing the distribution of the activation energy (termed E) required to break OC covalent bonds. Our results reveal that OC in fjord sediments is more labile than that in global sediments, which is governed by unique OC provenance and organo-mineral interactions. We estimated that 61±16% of the sedimentary OC in fjords is degradable. Once this OC is remobilized and remineralized during glacial periods (sea level lowstands), the CO2 produced could counterbalance up to 50 ppm of atmospheric CO2 decrease in glacial times, making fjords critical actors in dampening glacial-interglacial climate fluctuations through negative carbon cycling loops.<br/

    Permafrost and groundwater interaction: current state and future perspective

    No full text
    &lt;p&gt;This study reviews the available and published knowledge of the interactions between permafrost and groundwater. In its content, the paper focuses mainly on groundwater recharge and discharge in the Arctic and the Qinghai-Tibet Plateau. The study revealed that the geochemical composition of groundwater is sitespecific and varies significantly within the depth of the aquifers reflecting the water-rock interactions and related geological history. All reviewed studies clearly indicated that the permafrost thaw causes an increase in groundwater discharge on land. Furthermore, progressing climate warming is likely to accelerate permafrost degradation and thus enhance hydrological connectivity due to increased subpermafrost groundwater flow through talik channels and higher suprapermafrost groundwater flow. In the case of submarine groundwater discharge (SGD), permafrost thaw can either reinforce or reduce SGD, depending on how much pressure changes affecting the aquifers will be caused by the loss of permafrost. Finally, this comprehensive assessment allowed also for identifying the lack of long-term and interdisciplinary in situ measurements that could be used in sophisticated computational simulations characterizing the current status and predicting groundwater flow and permafrost dynamics in the future warmer climate.&lt;/p&gt
    corecore