53 research outputs found

    Supramacroeconomics: the newest management technology

    Get PDF
    A new management technology, based on modern developments in macroeconomics, was offered. It is aimed at the highest issues of state and society governing as well as finding methods of their solving. The grounding of necessity of separate supramacroeconomical level of management establishment was made; the methods and tools on its realization were developed. Examples of their implementation in Ukraine are still being interpreted.supramacroeconomic; supramacroeconomics; macroeconomics; economic; economics; technology; management; development

    Supramacroeconomics: the newest management technology

    Get PDF
    A new management technology, based on modern developments in macroeconomics, was offered. It is aimed at the highest issues of state and society governing as well as finding methods of their solving. The grounding of necessity of separate supramacroeconomical level of management establishment was made; the methods and tools on its realization were developed. Examples of their implementation in Ukraine are still being interpreted

    Supramacroeconomics: the newest management technology

    Get PDF
    A new management technology, based on modern developments in macroeconomics, was offered. It is aimed at the highest issues of state and society governing as well as finding methods of their solving. The grounding of necessity of separate supramacroeconomical level of management establishment was made; the methods and tools on its realization were developed. Examples of their implementation in Ukraine are still being interpreted

    Pure Red Cell Aplasia with M-Gradient: A Literature Review and Clinical Experience

    Get PDF
    Background. Pure red cell aplasia (PRCA) is a rare syndrome characterized by a decrease of erythroid progenitor cell count in the bone marrow. M-gradient with both a light and a heavy chain types in PRCA patients is a rare phenomenon which is considered to be a specific form of the disease. Aim. To review a clinical presentation, diagnostic capabilities, and treatment outcomes of PRCA with M-gradient. Materials & Methods. The analysis included 10 patients. The most effective empirically established treatment program was 200–400 g of cyclophosphamide 2–3 times a week to a total dose of 6–10 g and loading courses of 100–120 mg of oral and 180–240 mg of intravenous prednisone daily within 5 days. On the 6th day prednisone injections were discontinued, and from the 7th day the oral dose of prednisone was gradually reduced to permanent discontinuation in 2–3 days. This treatment course was repeated 1–3 times at intervals of a week. Targeted enzyme immunoassay of M-gradient was performed in 4 patients in order to determine whether M-gradient is the sum of two antibody types, i.e. erythrokaryocyte antibodies and secondary anti-idiotype antibodies against primary antibodies. Results. The total of 6 out of 10 PRCA patients reached complete remission within the period from 9 months to 22 years of follow-up, in 4 patients no remission was achieved. M-gradient contained IgG (n = 9) and IgA (n = 1) oligoclones. In typing it consisted of IgGΞ» (n = 4), IgGΞΊ (n = 5) and IgAΞΊ (n = 1). M-gradient enzyme immunoassay showed no primary and secondary anti-idiotype antibodies. Conclusion. The obtained results allow to regard gammopathy in PRCA as an effect of oligoclonal hyper-immunoglobulin without any pathogenetic connection between M-gradient and PRCA

    БАЗА ДАННЫΠ₯ ΠΠšΠ’Π˜Π’ΠΠ«Π₯ Π ΠΠ—Π›ΠžΠœΠžΠ’ Π•Π’Π ΠΠ—Π˜Π˜

    Get PDF
    This paper describes the technique used to create and maintain the Active Faults of Eurasia Database (AFED) based on the uniform format that ensures integrating the materials accumulated by many researchers, incluΒ­ding the authors of the AFED. The AFED includes the data on more than 20 thousand objects: faults, fault zones and associated structural forms that show the signs of latest displacements in the Late Pleistocene and Holocene. The geographical coordinates are given for each object. The AFED scale is 1:500000; the demonstration scale is 1:1000000. For each object, the AFED shows two kinds of characteristics: justification attributes, and estimated attributes. The justification attributes inform the AFED user about an object: the object’s name; morphology; kinematics; the amplitudes of displacement for different periods of time; displacement rates estimated from the amplitudes; the age of the latest recorded signs of activity, seismicity and paleoseismicity; the relationship of the given objects with the parameters of crustal earthquakes; etc. The sources of information are listed in the AFED appendix. The estimated attributes are represented by the system of indices reflecting the fault kinematics according to the classification of the faults by types, as accepted in structural geology, and includes three ranks of the Late Quaternary movements and four degrees of reliability of identifying the structures as active ones. With reference to the indices, the objects can be compared with each other, considering any of the attributes, or with any other digitized information. The comparison can be performed by any GIS software. The AFED is an efficient tool for obtaining the information on the faults and solving general problems, such as thematic mapping, determining the parameters of modern geodynamic processes, estimaΒ­ting seismic and other geodynamic hazards, identifying the tectonic development trends in the Pliocene–Quaternary stage of the Earth's development, etc. The Active Faults of Eurasia Database is created in the format providing for inputs of new information, as well the database updating and revision.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΠ΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° создания ΠΈ содСрТаниС Π½ΠΎΠ²ΠΎΠΉ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π°Π·Π»ΠΎΠΌΠ°Ρ… Π•Π²Ρ€Π°Π·ΠΈΠΈ (Π‘Π”), ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠ΅ΠΉ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½Ρ‹ΠΉ ΠΊ настоящСму Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ исслСдоватСлями, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² Π‘Π”. Она Π²ΠΌΠ΅Ρ‰Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ 20 тыс. гСографичСски привязанных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² – Ρ€Π°Π·Π»ΠΎΠΌΠΎΠ², Π·ΠΎΠ½ Ρ€Π°Π·Π»ΠΎΠΌΠΎΠ² ΠΈ связанных с Π½ΠΈΠΌΠΈ структурных Ρ„ΠΎΡ€ΠΌ с ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ послСдних ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ Π² ΠΏΠΎΠ·Π΄Π½Π΅ΠΌ плСйстоцСнС ΠΈ Π³ΠΎΠ»ΠΎΡ†Π΅Π½Π΅. ΠœΠ°ΡΡˆΡ‚Π°Π±, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ составлСна Π‘Π”, – 1:500000, Π° Π±Π°Π·ΠΎΠ²Ρ‹ΠΉ дСмонстрационный ΠΌΠ°ΡΡˆΡ‚Π°Π± – 1:1000000. ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π‘Π” снабТСн двумя Π²ΠΈΠ΄Π°ΠΌΠΈ характСристик (Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΎΠ²) – ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ ΠΈ ΠΎΡ†Π΅Π½ΠΎΡ‡Π½Ρ‹ΠΌΠΈ. ΠžΠ±ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Ρ‹ содСрТат свСдСния ΠΎΠ± ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ… – ΠΈΡ… названия, Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ смСщСний Π·Π° Ρ€Π°Π·Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, рассчитанныС ΠΏΠΎ Π½ΠΈΠΌ скорости Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, возраст послСдних зафиксированных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² активности, проявлСния сСйсмичности ΠΈ палСо­сСйсмичности, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ ΠΊΠΎΡ€ΠΎΠ²Ρ‹Ρ… зСмлСтрясСний ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ характСристики, Π° Ρ‚Π°ΠΊΠΆΠ΅ свСдСния ΠΎΠ± источниках ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, список ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ ΠΊ Π‘Π”. ΠžΡ†Π΅Π½ΠΎΡ‡Π½Ρ‹Π΅ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Ρ‹ – это систСма индСксов, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΡ… ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ Ρ€Π°Π·Π»ΠΎΠΌΠΎΠ² согласно принятой Π² структурной Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ‚ΠΈΠΏΠΈΠ·Π°Ρ†ΠΈΠΈ, Ρ€Π°Π½Π³ скорости ΠΏΠΎΠ·Π΄Π½Π΅Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ (Ρ‚Ρ€ΠΈ Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ) ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ достовСрности выдСлСния структуры ΠΊΠ°ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ (Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ). Π˜Π½Π΄Π΅ΠΊΡΡ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠΎΠΏΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ ΠΏΠΎ Π»ΡŽΠ±ΠΎΠΌΡƒ ΠΈΠ· Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΎΠ² ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹ΠΌ способом ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ с Π»ΡŽΠ±Ρ‹ΠΌΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΠΎΡ†ΠΈΡ„Ρ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ любой Π“Π˜Π‘-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π‘Π” Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ для получСния свСдСний ΠΎ Ρ€Π°Π·Π»ΠΎΠΌΠ°Ρ… ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰ΠΈΡ… Π·Π°Π΄Π°Ρ‡ – тСматичСского картографирования, опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² соврСмСнных гСодинамичСских процСссов, ΠΎΡ†Π΅Π½ΠΊΠΈ сСйсмичСской ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… гСодинамичСских опасностСй, Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΉ тСктоничСского развития Π½Π° послСднСм, ΠΏΠ»ΠΈΠΎΡ†Π΅Π½-Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈΡ‡Π½ΠΎΠΌ, этапС развития Π—Π΅ΠΌΠ»ΠΈ. Π€ΠΎΡ€ΠΌΠ°Ρ‚ построСния Π‘Π” допускаСт Π΅Π΅ постоянноС ΠΏΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΡŽ с появлСниСм Π½ΠΎΠ²Ρ‹Ρ… свСдСний.

    ИспользованиС Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π°Π·Π»ΠΎΠΌΠΎΠ² Π•Π²Ρ€Π°Π·ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ тСктоничСских Π·Π°Π΄Π°Ρ‡

    Get PDF
    The article describes principles, methods and tasks of tectonic studies using computer processing of the Active Faults of Eurasia Database. This new database contains more than 30000 objects that are geographically linked, equipped with attributes of the kinematic type, estimated movement rates and activity confidence ranks. As an exam‐ ple, we consider processing of the data on several tectonic regions of the Alpine‐Himalayan mobile belt and construction of rose‐diagrams of faults for a comparative analysis of their Late Cenozoic kinematics. The processed data set also covered the Caucasus‐Anatolian region and the entire central part of the mobile belt, and fields of shortening/lengthening and shearing were mapped to assess the patterns of these processes in different areas and to determine the characteristics of the tectonic flow of the upper crust material. Prospects are discussed for the database processing with the use of all the available attributive information for structural‐kinematic and geodynamic analysis, including processing of the database in combination with independent remote and geophysical data.ΠžΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ тСктоничСских исслСдований с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ком‐ ΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½ΠΎΠ²ΠΎΠΉ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π°Π·Π»ΠΎΠΌΠΎΠ² Π•Π²Ρ€Π°Π·ΠΈΠΈ, содСрТащСй Π±ΠΎΠ»Π΅Π΅ 30000 гСографичС‐ ски привязанных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², снабТСнных Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Π°ΠΌΠΈ кинСматичСского Ρ‚ΠΈΠΏΠ°, ΠΎΡ†Π΅Π½ΠΊΠ°ΠΌΠΈ скоростСй двиТСния ΠΈ достовСрности активности. Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² рассмотрСна ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… тСктоничСских областСй ΠΠ»ΡŒΠΏΠΈΠΉΡΠΊΠΎβ€Π“ΠΈΠΌΠ°Π»Π°ΠΉΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ пояса с построСниСм роза‐диаграмм Ρ€Π°Π·Π»ΠΎΠΌΠΎΠ² для ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΡ… позднСкайнозойской ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠšΠ°Π²ΠΊΠ°Π·ΡΠΊΠΎβ€ΠΠ½Π°Ρ‚ΠΎΠ»ΠΈΠΉΡΠΊΠΎΠ³ΠΎ Ρ€Π΅Π³ΠΈΠΎΠ½Π° ΠΈ всСй Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ пояса с построСниСм ΠΊΠ°Ρ€Ρ‚ ΠΏΠΎΠ»Π΅ΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ сокращСния – удлинСния ΠΈ сдвига для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΈΡ… распрСдСлСния Π² Ρ€Π°Π·Π½Ρ‹Ρ… областях ΠΈ выяснСния характСристик тСктоничСского тСчС‐ ния Π²Π΅Ρ€Ρ…Π½Π΅ΠΊΠΎΡ€ΠΎΠ²Ρ‹Ρ… масс. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ пСрспСктивы ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… с использованиСм всСго ком‐ плСкса содСрТащСйся Π² Π½Π΅ΠΉ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ для структурно‐кинСматичСского ΠΈ гСодинамичСско‐ Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, Π² Ρ‚ΠΎΠΌ числС ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… совмСстно с нСзависимыми дистанционными ΠΈ гСофизичС‐ скими ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ

    Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine-phyric rocks from Kamchatsky Mys (Kamchatka, Russia)

    Get PDF
    Highlights β€’ Parental melts of sulfide-bearing KM rocks have near primary MORB-like composition. β€’ Crystallization of these S-saturated melts occurred in near-surface conditions. β€’ Extensive fractionation and crustal assimilation are not the causes of S-saturation. β€’ S content in melts can be restored by accounting for daughter sulfide globules. Abstract Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9–90β€―mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (Ξ”QFMβ€―=β€―+0.1β€―Β±β€―0.16 (1Οƒ) log. units) and crystallization temperature (1200–1285β€―Β°C), as well as mantle potential temperatures (~1350β€―Β°C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation)

    Active Tectonics and Geomorphology of the Kamchatsky Bay Coast in Kamchatka

    Get PDF
    Kamchatsky Bay is the northernmost bay at the Pacific Kamchatka coast. It is located at the junction between the Kamchatka segment of the Pacific subduction zone and the dextral transform fault of the western Aleutians. The combination of the subduction and collision processes in this region results in the unique set of tectonic controls influencing its geological and geomorphological evolution. The Kamchatka River estuarine area is located on the northern coast of Kamchatsky Bay. The modern Kamchatka River valley, its estuary, and an aggradation marine terrace some 30 km long and up to 5 km wide were formed in this area during the Holocene. A vast area in the rear part of the terrace and in the Stolbovskaya lowlands is now occupied by the peats deposited directly above lacustrine–lagoonal and fluvial facies. These aggradational landforms record traces of tsunamis and vertical coseismic deformations associated with great subduction earthquakes, as well as strikeslip and thrust faulting associated with the collision. The results indicate that the average recurrence interval for major tsunamis in the Kamchatsky Bay is 300 years. The recurrence interval on individual fault zones associated with the collision between the western Aleutian and Kamchatka arcs is a few thousand years for earthquakes of magnitude between 7 and 7.5. For the entire region, the recurrence interval for major crustal earthquakes associated with motions along faults may be equal to a few hundred years, which is comparable with that for subductionzone earthquakes
    • …
    corecore