103 research outputs found

    Enhancement of the cerium oxide primer layers deposited on AA2024-T3 aircraft alloy by preliminary anodization

    Get PDF
    The possibility for combination between anodized aluminum oxide (AAO) and cerium oxide primer layer (CeOPL) for elaboration of efficient protective coatings for AA2024-T3 aircraft alloy is proposed in the present research. The combined AAO/CeOPL coating characterizations include electrochemical impedance spectroscopy (EIS) combined with linear voltammetry (LVA), for extended times (until 2520 hours) to a model corrosive medium (3.5 % NaCl). Topographical and cross-sectional (SEM and EDX) observations were performed in order to determine the AAO/CeOPL film thickness and composition. The AAO/CeOPL layer durability tests were confirmed by standard neutral salt spray (NSS). The data analysis from all the used measurement methods has undoubtedly shown that the presence of AAO film significantly improves the cerium oxide primer layer (CeOPL) protective properties and performance

    Advanced Multifunctional Corrosion Protective Coating Systems for Light-Weight Aircraft Alloys—Actual Trends and Challenges

    Get PDF
    The present chapter is devoted to the recent trends in the field of the advanced corrosion protective layers elaboration. The chapter begins with brief classification of the standard aluminum alloys, remarking their importance for the transport sector, as well as the basic corrosion forms, typical for these alloys. It continues with the basic requirements regarding the elaboration of durable and reliable coating systems and the factors of detrimental effect during the service life time. The concept for passive and active corrosion protection capabilities is remarked as well. After description of the need for multilayered coating systems elaboration, the function of each layer is described beginning from (i) UV light–absorbing exterior layers, (ii) self-repairing reinforced intermediate barrier layers, and (iii) cerium oxide primer layers (CeOPL). The importance and the basic approaches for metallic alloy preliminary treatment are remarked, as well. Finally, the basic concepts and the function of each layer in advanced multilayered coating system are summarized in a special section. The chapter finishes with brief conceptual description of two advanced versatile technological synthesis methods, which enable elaboration of organic/inorganic hybrid polymers and reinforcing nanoparticles

    Crystal and magnetic structure of substituted lanthanum cobaltites

    Get PDF
    The crystal and magnetic structures of the lanthanum cobaltites La0.6Sr0.4CoO3, La0.6Sr0.4Co0.9Fe0.1O3 and La0.6Ba0.4Co0.9Fe0.1O3 have been studied by neutron powder diffraction at temperatures of 2, 300 and 900 K. All compounds undergo a phase transition from cubic to rhombohedral structure. Below the room temperature La0.6Sr0.4CoO3 becomes ferromagnetic while for the components with 10% Fe substituted for Co, we found an antiferromagnetic order

    Alternative technological approach for synthesis of ceramic pigments by waste materials recycling

    Get PDF
    AbstractAlternative technological approach is proposed enabling utilization of raw materials from an oil refinery, such as waste guard layers from reactors. Reagent grade and purified MgO, Cr2O3, Fe2O3, and nitric acid (HNO3), were used as additional precursors. The homogeneous mixtures obtained were formed into pellets and sintered at different temperatures. The main phase was proved by X-ray phase analysis (XRD) and compared to ICPDS database. The main phase in the ceramics synthesized was solid solution of spinel MgAl2O4 and magnesiochromite. These minerals are classified as chromspinelide MgCr1.2Al0.4Fe0.4O4 and alumochromite MgCr1.6Al0.4O4. Additional SEM observations, combined with EDX analysis were performed, evincing agglomeration at lower temperatures, followed by agglomerate crumbling, at elevated calcination temperature.The complete transformation of initial precursors into the final ceramic compounds was found to occur at 800°C – 1h. The ceramic samples synthesized had high density of 1.72–1.93g/cm3 and large absorption area – 32.93% which is probably due to the high porosity of the sample

    Impact of the final thermal sealing of combined zinc/cerium oxide protective coating primers formed on low carbon steel

    Get PDF
    The final sealing possesses a proven beneficial effect on the protective properties of anodic oxide films on aluminum. In this sense, the present research is devoted to the evaluation of the impact of this procedure on the barrier ability of combined Zn/Ce oxide layers deposited on low carbon steel samples. For this purpose, four samples were submitted to galvanic zinc deposition, followed by spontaneous formation of cerium oxide primer layer (CeOPL). Afterwards, two of the samples underwent thermal sealing in boiling water in order to enhance their barrier ability. Its evaluation was performed by two electrochemical methods: electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 hours of exposure to a diluted model corrosive medium (MCM). Other instrumental methods were used in order to describe the effect of this final procedure on the color characteristics and hydrophobicity of the films. The results were collected from multiple tests, followed by statistical data treatment. In addition, the surfaces of the obtained films were submitted to direct observation by scanning electron microscopy (SEM), coupled with energy dispersion X-ray (EDX). Their composition was determined by means of X-ray Photoelectron Spectroscopy (XPS). The acquired data have revealed a detrimental effect of the final sealing in boiling water. It was expressed by the loss of the barrier properties of the Zn/CeOPL films, combined with additional decolorization and hydrophilization. Finally, the mechanism of this detrimental effect was determined by further SEM, EDX and XPS analyses

    Evaluation of the electrochemical performance of Ag containing AAO layers after extended exposure to a model corrosive medium

    Get PDF
    The coating procedure appears to be an indispensable finishing stage in the production of Al based industrial products, engineering facilities and equipment. For this reason, there is an ever-increasing interest towards the elaboration of reliable corrosion protective layers with apparent coverage, adhesion, and barrier properties. In this sense, both the for­ma­ti­on of anodized aluminum oxide (AAO) layer and its further modification with silver enable the elaboration of advanced (Al-O-Ag) films with extended beneficial charac­te­ris­tics. The present research activities are aimed at the determination of the corrosion pro­tective properties of electrochemically synthesized Al-O-Ag layers on the technically pure AA1050 alloy. The structures and compositions of the obtained Al-O-Ag layers were characterized by X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The research activities were accomplished by means of two independent electrochemical characteri­za­tion methods: electrochemical impedance spectroscopy (EIS) and potentio­dynamic scan­ning (PDS). The electrochemical measurements were performed after 24, 168 and 672 hours of exposure to 3.5 % NaCl solution used as a model corrosive medium (MCM), in order to determine the barrier properties and durability of the elaborated Al-O-Ag layers. The analysis of the obtained results has undoubtedly shown that the proposed electro­chemical Al-O-Ag layer formation can successfully be used for the creation of self-standing layers with apparent corrosion protective properties. Besides, Al-O-Ag system can be used as a basis for development of efficient protective layers suitable for application in biologically contami­nated media.</p

    Multifunctional smart coatings on novel ceramics and glassceramic substrates in the context of the circular economy

    Get PDF
    Nowadays is time of products generated by “smart coatings” that exhibit multiple functionalities. In particular, the construction industry is reached the point where it is possible to fabricate “smart and sustainable” buildings that fulfll the requirements of a growing marketplace of products and devices for “smart cities” generation. In addition, if the buildings are “green”, i.e. in accordance with the today‘s economic model “made to be made again” or so-called “circular economy” they are very attractive and viable alternative for future businesses and industrial exploring. In this concept, we report a development sustainable ceramic and glass-ceramic tile substrates made by cheap, easily accessible and recycled materials that are further functionalized by different “smart coatings” for specifc applications. Devices that generate and save energy, air and pollution cleaning, with anti-slip and phosphorescence properties are some examples of the overview that this publication described

    Elaboration of advanced glass-ceramic glaze for anti-slip porcelain stoneware

    Get PDF
    The present communication describes the synthesis of anti-slip enamel exhibiting glass-ceramic nature using new matte frits and raw materials. The glass-ceramic glazes obtained are characterized by various instrumental techniques (X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical profilometry and microhardness measurements) to elucidate the nature of the crystallized phases, their morphology, surface roughness and the finished tile microhardness. The quality of the glazed piece is evaluated by the regulations of chemical resistance, stain-resistance and slipperiness. The enamel obtained devitrifies in crystals of calcium and barium silicoaluminates. It complies with anti-slip and stain-resistance standards, because its surface roughness is similar to that of non-slip enamel
    • 

    corecore