28,799 research outputs found

    Impact of Cohesion policy on Poland

    Get PDF
    Marek W. Kozak University of Warsaw [email protected] Impact of Cohesion policy on Poland Poland has relatively short experience in European policies implementation. Its ability to analyze the effects and modify strategies and implementation following experience-based rule is of particular importance for development pace and path. There is a number of ways of evaluating impacts of public intervention. In case of Cohesion policy and their key instruments (that is structural funds and Cohesion fund), it is important to notice, that in 2007 two structural funds (EAGGF and FIOR) ceased to exist. However, they still do contribute to the impact on Polish economy development, as many other external and internal factors (globalization, global terms of trade, institutional change, mix of national and European policies etc). Up to now richness and interlinkages between factors makes it more than difficult to identify and measure real net impact of specific funds, as their goals and management are - at least in theory - closely coordiated and are being implemented pretty long after formal date of end of financial perspective (due to N+2 and N+3 rules). Even in case of econometric models in use (HERMIN, QUEST and other) problem of net influence measurement exists as they are based mostly on previous performance and a number of assumptions relating to development factors. The aim of this text is to discuss available information (ex-post evaluation, progress reports, scientific publications and other sources) on the Polish case, and, more importantly, to assess whether the impact of Cohesion policy up to now is better visible on the demand or supply side. Main thesis is that the effects of Cohesion policy are mostly restricted to demand side, that is up to now it brings short-and medium-term results rather than impacts (understood as structural change).

    Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects

    Full text link
    The role of dimensionality (Euclidean versus fractal), spatial extent, boundary effects and system topology on the efficiency of diffusion-reaction processes involving two simultaneously-diffusing reactants is analyzed. We present numerically-exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via application of the theory of finite Markov processes, and via Monte Carlo simulation. As a general rule, we conclude that for sufficiently large systems, the efficiency of diffusion-reaction processes involving two synchronously diffusing reactants (two-walker case) relative to processes in which one reactant of a pair is anchored at some point in the reaction space (one walker plus trap case) is higher, and is enhanced the lower the dimensionality of the system. This differential efficiency becomes larger with increasing system size and, for periodic systems, its asymptotic value may depend on the parity of the lattice. Imposing confining boundaries on the system enhances the differential efficiency relative to the periodic case, while decreasing the absolute efficiencies of both two-walker and one walker plus trap processes. Analytic arguments are presented to provide a rationale for the results obtained. The insights afforded by the analysis to the design of heterogeneous catalyst systems are also discussed.Comment: 15 pages, 8 figures, uses revtex4, accepted for publication in Physica

    Small axial turbine stator technology program

    Get PDF
    An experimental investigation was conducted to determine the effects of surface finish, fillet radius, inlet boundary layer thickness, and free-stream inlet turbulence level on the aerodynamic performance of a small axial flow turbine stator. The principal objective of this program was to help understand why large turbine efficiency is not maintained when a large turbine is scaled to a smaller size. The stator used in this program as a one-sixth scale of a 762 mm (30 in.) diameter stator design with 50 vanes having a vane height of 17 mm (0.666 in.) and an aspect ratio of 1.77. A comprehensive overall test matrix was used to provide a complete engineering understanding of the effects of each variable over the full range of all the other variables. The range of each variable investigated was as follows: surface finish 0.1 micro (4 micro in.) to 2.4 micro (95 micro in.); boundary layer thickness 2 to 25 percent of channel height at each wall; fillet radius 0 mm (0 in.) to 1.0 mm (.040 in.) and turbulence 2 to 12 percent

    Prediction of a Structural Transition in the Hard Disk Fluid

    Full text link
    Starting from the second equilibrium equation in the BBGKY hierarchy under the Kirkwood superposition closure, we implement a new method for studying the asymptotic decay of correlations in the hard disk fluid in the high density regime. From our analysis and complementary numerical studies, we find that exponentially damped oscillations can occur only up to a packing fraction {\eta}*~0.718, a value which is in substantial agreement with the packing fraction, {\eta}~0.723, believed to characterize the transition from the ordered solid phase to a dense fluid phase, as inferred from Mak's Monte Carlo simulations [Phys. Rev. E 73, 065104 (2006)]. We next show that the same method of analysis predicts that exponential damping of oscillations in the hard sphere fluid becomes impossible when \lambda = 4n\pi {\sigma}^3 [1 + H(1)]>/- 34.81, where H(1) is the contact value of the correlation function, n is the number density and {\sigma} is the sphere diameter, in exact agreement with the condition, \lambda >/- 34.8, first reported in a numerical study of the Kirkwood equation by Kirkwood et al. [J. Chem. Phys. 18, 1040 (1950)]. Finally, we show that our method confirms the absence of any structural transition in hard rods for the entire range of densities below close packing.Comment: to be published in J. Chem. Phy

    Some International Constitutional Aspects of the Palestine Case

    Get PDF
    Cardiac tissue engineering via the use of stem cells is the future for repairing impaired heart function that results from a myocardial infarction. Developing an optimised platform to support the stem cells is vital to realising this, and through utilising new smart materials such as conductive polymers we can provide a multi-pronged approach to supporting and stimulating the stem cells via engineered surface properties, electrical, and electromechanical stimulation. Here we present a fundamental study on the viability of cardiac progenitor cells on conductive polymer surfaces, focusing on the impact of surface properties such as roughness, surface energy, and surface chemistry with variation of the polymer dopant molecules. The conductive polymer materials were shown to provide a viable support for both endothelial and cardiac progenitor cells, while the surface energy and roughness were observed to influence viability for both progenitor cell types. Characterising the interaction between the cardiac progenitor cells and the conductive polymer surface is a critical step towards optimising these materials for cardiac tissue regeneration, and this study will advance the limited knowledge on biomaterial surface interactions with cardiac cells

    Comments on the tectonism of Venus

    Get PDF
    Preliminary tectonic mapping of Venus from Venera 15/16 images shows unquestionable evidence of at least limited horizontal tectonism. The majority of tectonic features on Venus have no relation to topography. In fact, many axes of disruption interconnect, and cross sharp topographic boundaries at large angles, thereby discounting gravity as the driving force. Compressional zones (CZ's), unlike Extensional zones (EZ's), tend to be discontinuous, and, whereas EZ's cross tectonic and topographic boundaries at various angles, many CZ's on Venus are subparallel to these boundaries. Strike-like faulting is curiously lacking from the mapping, possible due to the steep incidence angle of the radar, which is far from optimal for detecting faults of small throw. A chronology of horizontal crustal movements, and hence the analysis of Venus' thermal development, is large dependent on understanding the crater form features. Regardless of their uncertain origin, the craters still could hold the answer to whether, and to what extent, crustal shuffling is occurring on Venus

    Clotho Tessera, Venus: A fragment of Fortuna Tessera

    Get PDF
    Clotho Tessera, adjacent to southeast Lakshmi Planum, may provide additional evidence for lateral crustal motions, and a model for the origin of small tessera fragments. Clotho Tessera and Lakshmi Planum are so noticeably different, and in such close proximity, it is difficult to derive a reasonable model of their formation in situ. Squeezing of material out from beneath Lakshmi has been suggested as an origin for Moira Tessera, which is also adjacent to Lakshmi and 1400 km west of Clotho. However, a logical model of juxtaposition of the two different terrains, originally from points once distant, can be made for Clotho and Lakshmi (and perhaps other small tesserae as well). It is suggested that Clotho Tessera was once part of Fortuna Tessera, but was cut off by a transcurrent fault zone (the DLZ) striking perpendicular to the Sigrun rift and carried westward where it collided with Lakshmi Planum (forming Danu Montes). A gravity anomaly along the southern border of Lakshmi, in the area of Danu Montes, was interpreted as indicating subduction there, providing additional supporting evidence for the collision hypothesis. Diffusion of the DLZ with proximity to Sigrun Fossae may be due to either higher ductility near the postulated Sigrun rift, or to burial by flows away from the rift nearer to Valkyrie Fossae. Other possible examples of migrating tesserae occur elsewhere: small pieces of Ananke Tessera can be fit back together as though they had rifted apart, and the spreading apart of Ananke and Virilis Tesserae has been suggested because of their symmetric locations about the axis of an inferred spreading zone. Other tessera fragments appear to have been isolated by rifting, with little, if any, significant lateral motion (e.g., Meni and Tellus Tesserae, and Thethus and Fortuna Tesserae). The migrating terrain model for Clotho Tessera supports Sukhanov's interpretation of tesseral fragments as rafts of lighter crustal material
    corecore