10,891 research outputs found

    Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three

    Full text link
    We determine, for all three-dimensional non-unimodular Lie groups equipped with a Lorentzian metric, the set of homogeneous geodesics through a point. Together with the results of [C] and [CM2], this leads to the full classification of three-dimensional Lorentzian g.o. spaces and naturally reductive spaces

    Tsallis' deformation parameter q quantifies the classical-quantum transition

    Get PDF
    We investigate the classical limit of a type of semiclassical evolution, the pertinent system representing the interaction between matter and a given field. On using as a quantifier of the ensuing dynamics Tsallis q-entropy, we encounter that it not only appropriately describes the quantum-classical transition, but that the associated deformation-parameter q itself characterizes the different regimes involved in the process, detecting the most salient fine details of the changeover.Comment: 19 pages, 7 figure

    Coherent states for a particle on a sphere

    Get PDF
    The coherent states for a particle on a sphere are introduced. These states are labelled by points of the classical phase space, that is the position on the sphere and the angular momentum of a particle. As with the coherent states for a particle on a circle discussed in Kowalski K {\em et al} 1996 {\em J. Phys. A} {\bf 29} 4149, we deal with a deformation of the classical phase space related with quantum fluctuations. The expectation values of the position and the angular momentum in the coherent states are regarded as the best possible approximation of the classical phase space. The correctness of the introduced coherent states is illustrated by an example of the rotator.Comment: LaTeX, 16 pages, 2 figure

    The status and future of EUV astronomy

    Full text link
    The Extreme Ultraviolet wavelength range was one of the final windows to be opened up to astronomy. Nevertheless, it provides very important diagnostic tools for a range of astronomical objects, although the opacity of the interstellar medium restricts the majority of observations to sources in our own galaxy. This review gives a historical overview of EUV astronomy, describes current instrumental capabilities and examines the prospects for future facilities on small and medium-class satellite platforms.Comment: Published in Advances in Space Researc

    Scalar field theory on κ\kappa-Minkowski space-time and Doubly Special Relativity

    Full text link
    In this paper we recall the construction of scalar field action on κ\kappa-Minkowski space-time and investigate its properties. In particular we show how the co-product of κ\kappa-Poincar\'e algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction Φ4\Phi^4 term we investigate the modified conservation laws. We show that the local interactions on κ\kappa-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.Comment: 17 pages; some editing done, final version to be published in Int. J. Mod. Phys.

    Relative Locality in κ\kappa-Poincar\'e

    Full text link
    We show that the κ\kappa-Poincar\'e Hopf algebra can be interpreted in the framework of curved momentum space leading to the relativity of locality \cite{AFKS}. We study the geometric properties of the momentum space described by κ\kappa-Poincar\'e, and derive the consequences for particles propagation and energy-momentum conservation laws in interaction vertices, obtaining for the first time a coherent and fully workable model of the deformed relativistic kinematics implied by κ\kappa-Poincar\'e. We describe the action of boost transformations on multi-particles systems, showing that in order to keep covariant the composed momenta it is necessary to introduce a dependence of the rapidity parameter on the particles momenta themselves. Finally, we show that this particular form of the boost transformations keeps the validity of the relativity principle, demonstrating the invariance of the equations of motion under boost transformations.Comment: 24 pages, 4 figures, 1 table. v2 matches accepted CQG versio

    Zeroing in on Supersymmetric Radiation Amplitude Zeros

    Full text link
    Radiation amplitude zeros have long been used to test the Standard Model. Here, we consider the supersymmetric radiation amplitude zero in chargino-neutralino associated production, which can be observed at the luminosity upgraded LHC. Such an amplitude zero only occurs if the neutralino has a large wino fraction and hence this observable can be used to determine the neutralino eigenstate content. We find that this observable can be measured by comparing the p_T spectrum of the softest lepton in the trilepton χ1±χ20\chi_1^\pm \chi_2^0 decay channel to that of a control process such as χ1+χ1\chi_1^+ \chi_1^- or χ20χ20\chi_2^0 \chi_2^0. We test this technique on a previously generated model sample of the 19 dimensional parameter space of the phenomenological MSSM, and find that it is effective in determining the wino content of the neutralino.Comment: 19 pages, 7 figure

    Asp-120 Locates Zn2 for Optimal Metallo-β-lactamase Activity

    Get PDF
    Metallo-β-lactamases are zinc-dependent hydrolases that inactivate β-lactam antibiotics, rendering bacteria resistant to them. Asp-120 is fully conserved in all metallo-β-lactamases and is central to catalysis. Several roles have been proposed for Asp-120, but so far there is no agreed consensus. We generated four site-specifically substituted variants of the enzyme BcII from Bacillus cereus as follows: D120N, D120E, D120Q, and D120S. Replacement of Asp-120 by other residues with very different metal ligating capabilities severely impairs the lactamase activity without abolishing metal binding to the mutated site. A kinetic study of these mutants indicates that Asp-120 is not the proton donor, nor does it play an essential role in nucleophilic activation. Spectroscopic and crystallographic analysis of D120S BcII, the least active mutant bearing the weakest metal ligand in the series, reveals that this enzyme is able to accommodate a dinuclear center and that perturbations in the active site are limited to the Zn2 site. It is proposed that the role of Asp-120 is to act as a strong Zn2 ligand, locating this ion optimally for substrate binding, stabilization of the development of a partial negative charge in the β-lactam nitrogen, and protonation of this atom by a zinc-bound water molecule

    Evidence for a Dinuclear Active Site in the Metallo-β-lactamase BcII with Substoichiometric Co(II): A New Model for Uptake

    Get PDF
    Metallo-β-lactamases are zinc-dependent enzymes that constitute one of the main resistance mechanisms to β-lactam antibiotics. Metallo-β-lactamases have been characterized both in mono- and dimetallic forms. Despite many studies, the role of each metal binding site in substrate binding and catalysis is still unclear. This is mostly due to the difficulties in assessing the metal content and site occupancy in solution. For this reason, Co(II) has been utilized as a useful probe of the active site structure. We have employed UV-visible, EPR, and NMR spectroscopy to study Co(II) binding to the metallo-β-lactamase BcII from Bacillus cereus. The spectroscopic features were attributed to the two canonical metal binding sites, the 3H (His116, His118, and His196) and DCH (Asp120, Cys221, and His263) sites. These data clearly reveal the coexistence of mononuclear and dinuclear Co(II)-loaded forms at Co(II)/enzyme ratios as low as 0.6. This picture is consistent with the macroscopic dissociation constants here determined from competition binding experiments. A spectral feature previously assigned to the DCH site in the dinuclear species corresponds to a third, weakly bound Co(II) site. The present work emphasizes the importance of using different spectroscopic techniques to follow the metal content and localization during metallo-β-lactamase turnover

    The relativistic massless harmonic oscillator

    Full text link
    A detailed study of the relativistic classical and quantum mechanics of the massless harmonic oscillator is presented.Comment: 15 pages, 4 figure
    corecore