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Metallo-�-lactamases are zinc-dependent hydrolases that
inactivate �-lactam antibiotics, rendering bacteria resistant to
them. Asp-120 is fully conserved in all metallo-�-lactamases
and is central to catalysis. Several roles have been proposed for
Asp-120, but so far there is no agreed consensus. We generated
four site-specifically substituted variants of the enzyme BcII
from Bacillus cereus as follows: D120N, D120E, D120Q, and
D120S. Replacement of Asp-120 by other residues with very dif-
ferent metal ligating capabilities severely impairs the lactamase
activity without abolishing metal binding to the mutated site. A
kinetic study of these mutants indicates that Asp-120 is not the
proton donor, nor does it play an essential role in nucleophilic
activation. Spectroscopic and crystallographic analysis of
D120S BcII, the least active mutant bearing the weakest metal
ligand in the series, reveals that this enzyme is able to accommo-
date a dinuclear center and that perturbations in the active site
are limited to theZn2 site. It is proposed that the role ofAsp-120
is to act as a strong Zn2 ligand, locating this ion optimally for
substrate binding, stabilization of the development of a partial
negative charge in the �-lactam nitrogen, and protonation of
this atom by a zinc-bound water molecule.

�-Lactamases are hydrolytic enzymes produced by bacteria
as a mechanism of resistance to �-lactam antibiotics (1, 2).
These enzymes are capable of catalyzing the scission of the
amide bond of the �-lactam ring characteristic of this class of
antibiotics, rendering them ineffective toward their targets.
They can be broadly divided into serine-�-lactamases andmet-
allo-�-lactamases, based on their active sites and catalytic

mechanisms.�-Lactam hydrolysis takes place by a nucleophilic
attack to the carbonyl group, and a subsequent C-N cleavage,
usually aided by protonation of the bridging nitrogen atom (3)
(Scheme 1).
In the case of serine-�-lactamases, the reaction proceeds

through formation of a covalent intermediate with the nucleo-
philic Ser-70 (4). Based on this mechanistic feature, clinically
useful inhibitors for serine-�-lactamases have been designed,
such as clavulanic acid and tazobactam, that give rise to irre-
versible inhibition by formation of a covalent adduct with the
enzyme (5). In contrast,M�L4-mediated catalysis does not pro-
ceed through such an intermediate, thus rendering these inhib-
itors ineffective (6).
The spread of plasmid-encodedM�L genes among opportu-

nistic and pathogenic bacteria, together with the lack of clini-
cally useful inhibitors, is becoming a serious and yet unsolved
clinical problem (7). The elucidation of the catalytic mecha-
nisms employed byM�Ls to hydrolyze �-lactam antibiotics is a
prerequisite for rational inhibitor design.
The activity of M�Ls is dependent on the presence of either

one or two Zn(II) ions in their active sites. M�Ls have been
classified into three subgroups (B1, B2, andB3), based on amino
acid sequence similarity, substrate profile, and structural prop-
erties (8). The diversity of these subgroups, exemplified by the
vastly different efficacies of nonclinical inhibitors toward
M�Ls, led to the prediction that finding a single inhibitor for all
metallo-�-lactamases may not be possible. The search for any
common mechanistic feature of M�Ls is therefore a high
priority.
The first crystal structure solved for anM�L was that of BcII

from Bacillus cereus, which revealed one Zn(II) ion bound to
three His residues (His-116, His-118, and His-196) and a H2O
molecule, in the so-called Zn1 or 3H site (9). Subsequent struc-
tures of BcII (10) and other B1 M�Ls (11–13) revealed a
dinuclear metal center containing the tetrahedral 3H site and
an additional trigonal bipyramidal Zn(II) site (the Zn2 or DCH
site), where the metal ion is coordinated to Asp-120, Cys-221,
His-263, a bridging H2O/OH�, and an additional water mole-
cule (Fig. 1). An analogous binding site in B3 enzymes is pro-
vided by Asp-120, His-121, andHis-263 (DHH site) (14, 15). B2
enzymes, however, are active as mononuclear enzymes, with
the only Zn(II) ion located in the DCH site (16). Despite these
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differences, Asp-120 is fully conserved in all metallo-�-lacta-
mases identified so far.
Substitution of Asp-120 in B1 and B3M�Ls have shown that

this residue is central to catalysis (17–20). The involvement of
Asp-120 in catalysis as a nucleophile was initially ruled out by
Bounaga et al. (21) andWang et al. (22). Since then, the follow-
ing have been proposed: 1) Asp-120 is the proton donor in the
rate-determining step of �-lactam hydrolysis (17, 21, 23); 2)
Asp-120 is a general base in the mechanism (21, 24, 25); 3)
Asp-120 helps in steering the attacking nucleophile (15, 20, 26);
and 4) Asp-120 orients a zinc-bound water molecule that
behaves as the proton donor (17, 19, 27, 28).
Despite all the efforts aimed at determining the role of Asp-120

in the hydrolysis of �-lactam antibiotics, there is no agreed con-
sensus. Toprovide further evidence regarding the role ofAsp-120,
we generated four site-specifically substituted variants of the
enzyme BcII from B. cereus. Asp-120 was replaced by an aspara-
gine, a glutamic acid, a glutamine, and a serine to create the BcII
mutant proteinsD120N,D120E,D120Q, andD120S, respectively.
Based on a series of biochemical, spectroscopic, and crystallo-
graphic studies, herewepropose that theprincipal role ofAsp-120
inM�Ls is defining thepositionof theZn2 ion,which is crucial for
stabilizing the development of a negative charge on the �-lactam
nitrogen atom, providing the water molecule that protonates this
nitrogen, and binding the substrate.

EXPERIMENTAL PROCEDURES

Reagents

All chemicals were of the highest quality available. Esche-
richia coli BL21(DE3)pLysS� cells (Stratagene, CA) were

employed for protein production. E. coli JM109 cells (Strat-
agene, CA) were employed for transformation with plasmid
DNAand ligationmixtures. Luria-Bertanimedium (Sigma)was
used as growth media for all bacterial strains.

DNA Techniques

DNA preparation and related techniques were performed
according to standard protocols (29). Plasmid DNA was iso-
lated using the Wizard Plus SV minipreps kit (Promega). DNA
was extracted from agarose gels using QIAEX II kit (Qiagen) or
GFX columns (Amersham Biosciences).

Site-directed Mutagenesis

A preparation of pET�LII plasmid DNA (30) was digested
with BamHI and PstI and subcloned into a vector pBluescript II
KS(�) previously digested with the same restriction endo-
nucleases, to obtain the plasmid KS-NH3, which contains the
DNA fragment coding for the NH3-terminal half of BcII (31).
This plasmid was used as the DNA template for the PCR-based
mutagenesis protocol. Site-directed mutagenesis was per-
formed using themegaprimer PCR protocol (32). The first PCR
was carried out using the plasmid KS-NH3 as the template
DNA, the ks-reverse primer (5�-TCACACAggAAACAgCTAT-
gAC-3�), and the corresponding mutagenic primer:
D120_N_SphI (5�-CACATgCgCATgCTAATCgAATTggCgg-
3�) for D120N, D120_S_SphI (5�-CACATgCgCATgCTAgTC-
gAATTggCgg-3�) for D120S, D120_E_SphI (5�-CACATgCgC-
ATgCTgAACgAATTggCgg-3�) for D120E, and D120_Q_SphI
(5�-CACATgCgCATgCTCAACgAATTggCgg-3�) for D120Q.
The mutagenic primers were designed to introduce a recogni-
tion site for the restriction endonuclease SphI, through the
introduction of a silent mutation, using the software Primer
Tailoring (33). Boldface underlined letters indicate the silent
mutation, and boldface italic underlined letters indicate the
nonsilent mutations. A 100-�l reactionmixture, containing 0.2
mM of each dNTP, 0.5 pmol/�l of each primer, 1 mM MgSO4,
100 ng of template DNA (KS-NH3), 10 �l of the 10� buffer
provided with the polymerase (New England Biolabs), and 2
units of Vent DNA polymerase (New England Biolabs), was
used in the PCR, using a GeneAmp� PCR System 2400 equip-
ment (PerkinElmer Life Sciences). The following cycles were
employed in the first PCR: 1) 1 cycle of 3 min at 94 °C; 2) pause
for the addition of the DNApolymerase; 3) 30 cycles of 2min at
94 °C, 3 min at 48 °C, and 2min at 72 °C; and 4) 1 cycle of 3 min
at 72 °C. The PCR mixture was resolved in a 2% agarose gel
containing ethidium bromide, and the 210-bp PCR product
(themegaprimer) was recovered from the excised agarose frag-
ment using the QIAEX II kit (Qiagen). The second PCR was
carried out using the same template DNA, themegaprimer that
codes for the desired mutation, and the ks-forward primer (5�-
CgCCAgggTTTTCCCAgTCACgAC-3�). All the megaprimer
recovered from the first PCR was used in the second round of
amplification, in a 50-�l reactionmixture, containing 0.2mMof
each dNTP, 0.5 pmol/�l of the ks-forward primer, 1 mM
MgSO4, 100 ng of template DNA (KS-NH3), 5 �l of the 10�
buffer provided with the polymerase (New England Biolabs
Inc.), and 1.2 units of Vent DNA polymerase (New England
Biolabs Inc.). The following cycles were employed in the second

FIGURE 1. Structure of the active site of wild-type BcII. The image shows
the active site of diZn(II)-BcII according to the crystal structure reported by
Fabiane et al. (10) (Protein Data Bank code 1bc2) and was generated with
Pymol (DeLano Scientific).

SCHEME 1

Zn2 Position Is Critical for Metallo-�-lactamase Activity
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PCR: 1) 1 cycle of 5min at 94 °C; 2) pause for the addition of the
DNA polymerase; 3) 35 cycles of 2 min at 94 °C, 2 min at 55 °C,
and 2 min at 72 °C; and 4) 1 cycle of 4 min at 72 °C. The ampli-
fication was corroborated by gel electrophoresis, and the
579-bp purified PCR product was digested with the restriction
endonucleases BamHI and PstI and cloned into pBluescript II
KS(�), previously digested with the same endonucleases. After
transformation of E. coli JM109 cells with the ligation mixture,
the presence of the mutated DNA sequences in the plasmid
DNA preparations from selected clones was first corroborated
by digestion of the DNA with the restriction endonuclease
SphI, whose recognition site was introduced by the mutagenic
primers. Afterward, the sequences were confirmed by DNA
sequencing (University of Maine Sequencing Facility). The
genes that code for the Asp-120 mutants of the metallo-�-lac-
tamase BcII were reconstructed by cloning the DNA fragment
coding for the mutagenized NH3-half of BcII, digested with the
enzymesBamHI andPstI, and theDNA fragment coding for the
wild-type COOH-half of BcII, digested with PstI and HindIII,
into the plasmid pET-TERM (31) previously digested with the
restriction endonucleases BamHI and HindIII. The expression
vector pET-TERM allows expression of the protein of interest
as an amino-terminal fusion to the enzyme glutathione S-trans-
ferase from Schistosoma japonicum, under control of the T7
promoter, and presents the termination sequence from the
BcII gene. The DNA fragment that codes for the COOH-
terminal half of BcII was purified, after digestion with PstI
and HindIII, from the plasmid KS-CT2 (31).

Enzyme Purification

Wild-type BcII and Asp-120 mutants were expressed in
E. coli BL21(DE3)pLysS� cells as fusion proteins with glutathi-
one S-transferase, purified, and quantified as follows. Typically,
the cell pellet obtained from 50 ml of a saturated culture in LB
medium, supplemented with 150 �g/ml ampicillin and 35
�g/ml chloramphenicol, was resuspended in freshmedium and
used to inoculate 1-liter of LB medium supplemented with 150
�g/ml ampicillin and 35 �g/ml chloramphenicol, in a 5-liter
Erlenmeyer flask. Cells were grown for 2 h at 37 °C until the
A600 � 1 was reached. The expression of fusion protein was
induced by addition of 10 g of lactose, and the culture was fur-
ther incubated at 37 °C for an additional 4-h period. All subse-
quent purification steps were performed at 4 °C. E. coli cells
were lysed by sonication in lysis buffer (16mMNa2HPO4, 4 mM

NaH2PO4, and 150 mM NaCl, pH 7, with 3.3 �g/ml DNase, 5
mM MgCl2, and 1 mM phenylmethylsulfonyl fluoride), and cell
debris was separated by ultracentrifugation. The GST-BcII
fusion protein was purified by affinity chromatography using a
glutathione-Sepharose resin (Amersham Biosciences) as
reported previously (30). The pure fractions were treated with
bovine plasma thrombin (Sigma) at a 1:100 ratio in 150 mM

NaCl, 2.5 mM CaCl2 at 26 °C during 2 h. BcII was purified from
the proteolysis mixture by ion-exchange chromatography on
Sephadex CM-50 (Amersham Biosciences) as reported previ-
ously (30). Protein samples were dialyzed against �100 vol-
umes of 10mMHEPES, pH7.5, 0.2MNaCl. Purity of the enzyme
preparations was checked by SDS-PAGE. Protein concentra-

tion was measured spectrophotometrically using �280 � 30,500
M�1�cm�1 (34).

Determination of the Zn(II) Content of the Enzymes

The metal content in the samples of wild-type BcII and Asp-
120 mutants was determined under denaturing conditions
using the colorimetric metal chelator 4-(2-pyridylazo)resor-
cinol, as described by Fast et al. (35).

Steady-state Kinetic Assays

The kinetic parameters for the hydrolysis of different �-lac-
tam antibiotics catalyzed by wild-type BcII and Asp-120
mutants under steady-state conditions were obtained by deter-
mination of the initial rate of reaction at different substrate
concentrations. Substrate concentrations were calculated
based on the following molar absorptivities: penicillin G,
��235 � �775 M�1�cm�1; cefotaxime, ��260 � �7,500
M�1�cm�1; nitrocefin, ��485 � 17,420 M�1�cm�1; imipenem,
��300 � �9,000 M�1�cm�1. The plots of the dependence of the
initial rates on substrate concentration were fitted to the
Michaelis andMenten equation, using SigmaPlot 8.0. Reactions
were carried out in 10mMHEPES, pH 7.5, 200mMNaCl, 20 �M
ZnSO4, and 0.05 mg/ml bovine serum albumin at 30 °C.
Absorbance changes upon substrate hydrolysis were measured
in a Jasco V-550 spectrophotometer, and the temperature was
kept constant by means of a Polyscience digital circulator con-
nected to the cell holder in the spectrophotometer.

Solvent Kinetic Isotope Effect Assays

The kinetic parameters obtained for the hydrolysis of differ-
ent �-lactam antibiotics catalyzed by wild-type BcII and Asp-
120 mutants in H2O, under steady-state conditions, were com-
pared with the kinetic parameters obtained for the same
reaction carried out in D2O. The initial rate of hydrolysis at
different substrate concentrations was measured in 10 mM
HEPES, pD 7.5 (pH 7.1), 200 mM NaCl, 20 �M ZnSO4, and 0.05
mg/ml bovine serum albumin at 30 °C. The dependence of the
initial rates on substrate concentration was fitted to the
Michaelis-Menten equation, using SigmaPlot 8.0. The deuter-
ated reaction medium was kept at 30 °C under a N2 gas atmo-
sphere, prior to reaction. The hydrolysis of the antibiotics was
registered in open cells, during less than 5 min, to avoid a sig-
nificant water uptake from the environment.

Preparation of Metal-free Enzymes

All buffer solutions used to prepare the apoenzymes were
treated by extensive stirring with Chelex 100 (Sigma). Apopro-
tein samples were prepared by dialysis of the purified holopro-
tein (�200 �M) against two changes of�100 volumes of 10mM
HEPES, pH 7.5, 0.2 M NaCl, 20 mM EDTA over a 12-h period
under stirring (36). EDTA was removed from the resulting
apoenzyme solution by three dialysis steps against �100 vol-
umes of 10mMHEPES, pH 7.5, 1 MNaCl, Chelex 100, and three
dialysis steps against �100 volumes of 10 mM HEPES, pH 7.5,
0.2 M NaCl, Chelex 100 (36). For the preparation of apoprotein
samples used in EPR experiments, the three last dialysis steps
were replaced by one dialysis step against �100 volumes of 10
mM HEPES, pH 7.5, 0.2 M NaCl, Chelex 100 and finally two
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dialysis steps against �100 volumes of 100 mM HEPES, pH 7.5,
0.2 M NaCl, Chelex 100. All dialysis steps were carried out at
4 °C.

Electronic Spectroscopy of Co(II)-BcII Derivatives

A solution of 200–300 �M apoprotein in 10 mM HEPES, pH
7.5, 0.2 M NaCl was titrated with a 10.6 mM CoSO4 stock solu-
tion prepared in 10 mM HEPES, pH 7.5, 0.2 M NaCl. For the
UV-visible titration, which was done in parallel with the EPR
titration, a solution of 1.2 mM apo-BcII D120S in 100 mM
HEPES, pH 7.5, 0.2 M NaCl was titrated with a 6 mM CoSO4
stock solution prepared in 100 mM HEPES, pH 7.5, 0.2 M NaCl.
The equivalents of bound Co(II) were calculated as the ratio
between the concentration of Co(II) in the sample and the con-
centration of protein capable of binding metal, which was cal-
culated bymultiplying the concentration of protein determined
by absorbance at 280 nm by the factor n/2, where n is the Zn(II)
content of the purified proteins. The spectra were recorded at
room temperature in aUV-visible Jasco V-550 spectrophotom-
eter, and difference spectra were obtained by subtracting the
spectrum of the corresponding apoprotein.

EPR Spectroscopy

EPR spectroscopy was performed at 13 K, 2 milliwatts, and
9.63 GHz (Bmicrowave � Bstatic) using a Bruker Elexsys E500
spectrometer equipped with an ER 4116 DM TE012/TE102 dual
mode X-band cavity and an Oxford Instruments ESR-900
helium flow cryostat.
The apoprotein (1.2 mM), in 100 mM HEPES, pH 7.5, 0.2 M

NaCl, was titrated stepwise with a 6 mM CoSO4 stock solution
prepared in the same buffer. The Co(II)-containing solution
was rapidly mixed with the sample in the EPR tube by manual
flicking (37) and frozen in liquid nitrogen. EPR samples for
successive additions of Co(II) were quickly thawed (�5 s) from
77 to 293 K by agitating the sample tube in water.

X-ray Crystallography

Crystallization andData Collection—D120Swas crystallized
using the vapor diffusion method. 1 �l of the protein solution,
at 4.7 mg/ml, was mixed with 1 �l of reservoir solution, con-
taining 17–19% PEG-3350, 0.1 M sodium cacodylate, pH 5.0–
5.5, 0.1 M sodium tartrate. Large single crystals grew within a
few weeks. These were transferred to a solution supplemented
with 25% glycerol and cryocooled by plunging them into liquid
nitrogen. The crystals diffract to 1.95 Å resolution, and a data
set was collected at CCLRC Daresbury Synchrotron Radiation
Source, station 14.2, at a wavelength of 0.9853Å. The space
group was C2, with unit cell parameters a � 53.39 Å, b �
61.97Å, c� 69.57Å, and� � 93.28°. The data were reduced and
scaled usingMOSFLM (38) and SCALA as implemented in the
CCP4 package (39). Data processing statistics are given on
Table 2. 5% of the reflections, chosen randomly, were assigned
for the Rfree calculations.
Structure Determination and Refinement—The structure

was determined bymolecular replacement usingCNS (40). The
crystal structure of the wild-type BcII (Protein Data Bank code
3BC2) was used as a search model, stripped of all nonconva-
lently bound atoms. One clear solution was found, and rigid

body refinement yielded R-factor of 30.9% and Rfree was 31.6%.
The structure was refined using CNS during two rounds, and
finished using Refmac5 from the CCP4 package. Model build-
ing was performed using Quanta (Accelrys) and Coot (41). The
TLS groups were chosen using TLSMD (42), run from the
TLSMD server (43). The final Rfree was 22.1%, R-factor for 95%
of reflections was 14.6%. It was clear that some of the nonco-
valently bound atoms (including the Zn(II) ion in position Zn2)
were not fully occupied.At 1.95Å resolution, it was not possible
to refine their occupancy and temperature factor simulta-
neously, and so their occupancies were fixed at 0.5. The final
model contains 218 residues, two zinc ions, four glycerol mol-
ecules, and 283waters. Asp-84, as is the case in other structures
of the same protein, is in the disallowed region of the Ram-
achandran plot. The geometry of the model is good as checked
by SFCHECK (44), PROCHECK (45), MolProbity (46), and
Coot (41).

RESULTS

Biochemical andEnzymaticCharacterization of BcII Asp-120
Mutants—To probe the role of Asp-120 in M�Ls, we designed
the following point mutants: D120S, D120N, D120E, and
D120Q. Asparagine was chosen as a chemically distinct but
structurally similar substitute for aspartic acid. Glutamic acid
was chosen as a chemically similar but structurally distinct sur-
rogate for aspartic acid, and glutamine was chosen for compar-
ison with the D120E mutant and to facilitate correlation with
the differences found between WT BcII and D120N. Replace-
ment of aspartic acid with serine was intended to remove both
the ability of the residue at this position to bind metal and to
interact with the bridging H2O/OH�.

The BcII mutants on Asp-120 were expressed in E. coli
BL21(DE3)pLysS� as fusion proteins with GST; the fusion pro-
teins were digested with thrombin, and the BcII variants were
then purified to homogeneity from the digestionmixture. In all
cases, the mutant enzymes were properly folded, as revealed by
the CD spectra that were similar to those of WT BcII (data not
shown). Thus, major changes in the enzyme activity can be
attributed to a direct effect of the introduced mutations on
catalysis because the structural integrity of themutant enzymes
is mostly preserved.
The total Zn(II) content was determined by a spectrophoto-

metric assay of the colorimetric reagent 4-(2-pyridylazo)resor-
cinol, after dialysis of the mutant proteins against a metal-free
buffer solution. The measured metal contents were 1.7 Zn(II)/
enzyme (WTBcII), 1.2 Zn(II)/enzyme (D120E BcII), 1.9 Zn(II)/
enzyme (D120NBcII), 1.6 Zn(II)/enzyme (D120QBcII), and 1.7
Zn(II)/enzyme (D120S BcII). This suggests that replacement of
the conserved metal ligand Asp-120 by a Ser, Asn, Glu, or Gln
(with quite different metal ligating capabilities) does not abol-
ish metal binding to the DCH site.
The hydrolytic capabilities of all the purified mutants were

tested against different �-lactam substrates under steady-state
conditions in the presence of 20 �M added Zn(II), to ensure
formation of a dinuclear site. All the four mutants were clearly
less active than WT BcII (Table 1). In general, the mutants
displayed an impaired affinity toward all substrates, as inferred
from the higher Km values, except for the D120E and D120Q
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mutants that showed similar and smaller Km against imipenem
compared with WT BcII, respectively.
Among all the studied mutants, BcII D120S showed the

poorest catalytic efficiency toward all substrates, with kcat/Km
values lower by between 3 and 4 orders ofmagnitude compared
with the native enzyme. This was mostly because of very low
kcat values in this mutant.

BcIID120Ewas, in general, themost activemutant in the series.
Exceptions were BcII D120N with nitrocefin and D120Q with
penicillin G, which showed similar activities to D120E with these
substrates. BcII D120N and D120Q displayed an intermediate
level of activity, with different trends depending on the analyzed
substrate. For example, D120Nwasmore active toward nitrocefin
and cefotaxime than BcII D120Q, whereas the latter was a better
imipenemase andpenicillinase thanD120N. Interestingly,D120Q
showed the smallest kcat value for imipenem hydrolysis and a rel-
atively high binding affinity toward this substrate.
Solvent Kinetic Isotope Effect—The solvent kinetic isotope

effect (Dkcat) was studied forWTBcII and for all themutants by
determining the steady-state catalytic parameters in H2O and
D2O for nitrocefin and cefotaxime (Table 1). When the reac-
tions were performed with 20 �M added Zn(II), WT BcII
showed a normal SKIE (Dkcat � 1), indicating that the rate-
limiting step involves a proton transfer. All BcII D120X
mutants also presented a normal SKIE. It is interesting to note
that this held for BcII D120S, D120N, and D120Q, all mutants
lacking a carboxylate moiety in position 120.
Spectroscopic Characterization of the Co(II)-D120X BcII

derivatives—To better analyze themetal binding capabilities of
the different mutants and to gain some structural insight, we
obtained the Co(II) derivatives. The UV-visible spectra of these
derivatives obtained upon addition of excess Co(II) to the cor-
responding mutant apoenzymes are shown in Fig. 2 and com-
pared with the already reported spectrum of Co(II)-substituted
WT BcII. All of them show an intense feature in the UV range
and a four-pattern band in the visible spectrum, with some
minor variations in their intensities and wavelengths. The UV
absorption can be attributed, as in the native enzyme, to a Cys-
Co(II) charge transfer band arising from Cys-221 bound to

Co(II) ion in the DCH site. The finding of this band in all
mutants clearly reveals that Co(II) binds at the Cys-221-con-
taining site (which we continue to denote the “DCH” site)
despite the substitution of Asp-120. The Cys-Co(II) CT band is
found at 330 nm in D120N and D120Q, whereas in WT BcII,
D120E, andD120S, the absorption is located at around 343 nm.
These changes reveal different levels of (minor) perturbation of
the Cys-Co(II) interaction among the different mutants.
The four absorption bands in the visible range correspond to

Laporte forbidden d-d (or ligand field) electronic transitions of
the Co(II) ion bound to the 3H site. A closer inspection of these
features reveals different relative intensities of these bands
compared with Co(II)-substitutedWT BcII. This can be attrib-
uted to some distortion of the nominally tetrahedral 3H site or
to the presence of an additional absorption in this region arising
from the DCH site, induced by the mutation.
When all four mutant apoenzymes were titrated with

increasing Co(II) concentrations, the CT and the ligand field
bands grew almost simultaneously (as observed in the native
enzyme), revealing that both sites are being filled at the same

FIGURE 2. UV-visible spectra of Co(II)-substituted WT BcII and Asp-120
BcII mutants. The spectra correspond to the di-Co(II) forms in 10 mM HEPES,
pH 7.5, 200 mM NaCl. The extinction coefficients were calculated by consider-
ing the amount of enzyme determined from the intensity at 280 nm.

TABLE 1
Steady-state kinetic parameters for WT BcII and Asp-120 BcII mutants with different substrates and SKIE for nitrocefin and cefotaxime
hydrolysis
Reactions were carried out in 10 mM HEPES, pH or pD 7.5, 200 mM NaCl, 20 �M ZnSO4, and 0.05 mg/ml bovine serum albumin at 30 °C. Standard deviation values were
�10%.

Nitrocefin Imipenem
kcat Km kcat/Km

Dkcat kcat Km kcat/Km

s�1 �M M�1�s�1 s�1 �M M�1�s�1

WT 7.9 5.7 1.4 � 106 1.41 114 660 1.7 � 105
D120E 3.6 174 2.1 � 104 1.3 35.7 447 8.0 � 104
D120N 5.4 180 2.97 � 104 2.5 14.7 6800 2.2 � 103
D120Q 0.68 922 7.4 � 102 1.26 2.89 142 2.04 � 104
D120S 9 � 10�3 62 1.5 � 102 1.12 4.7 5100 9 � 102

Cefotaxime Penicillin G
kcat Km kcat/Km

Dkcat kcat Km kcat/Km

s�1 �M M�1�s�1 s�1 �M M�1�s�1

WT 67 42 1.6 � 106 1.6 262 509 5.1 � 105
D120E 14.5 97 1.49 � 105 1.33 16.1 1550 1.04 � 104
D120N 5.5 123 4.5 � 104 2.5 9.9 1900 5.2 � 103
D120Q 1.91 270 7.1 � 103 1.49 75 6770 1.1 � 104
D120S 0.176 600 2.9 � 102 1.8 0.41 2700 1.5 � 102
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time under these conditions (data not shown). Although these
experimental conditions do not allow us to retrieve reliable dis-
sociation constants, the titration curves clearly show thatmetal
binding is weaker in the mutants than in WT BcII.
An EPR spectrometric titration of the least active BcII vari-

ant, D120S, was carried out, and the results are presented in Fig.
3A. A UV-visible titration in similar conditions (1 mM concen-
tration) revealed the formation of a Co(II)-D120S BcII species
that had not been found when working at lower protein con-
centrations. In the range of 0.11–0.41 Co(II)/protein ratios, a
species with no detectable CT band and a d-d pattern different
from the one present in the final adduct is detected (supple-
mental Fig. S1). A CT band at 343 nm is noticeable from 0.97
Co(II) equivalents onwards, which grows steadily until a 2:1
metal ion/protein ratio is achieved.
When the Co(II)-substituted samples were interrogated by

EPR spectroscopy, a complex multicomponent EPR signal was
observed at low (0.06–0.23 eq) levels of Co(II). This signal
strongly resembled that from the B2 lactamase ImiS (47), and
contained a saturation-resistant component (supplemental Fig.
S2). This signal can be attributed to a highly strained rhombic
MS � �	1⁄2
 system because of distorted five-coordinate Co(II),
as observed in the metallohydrolases DapE (48) and VanX (49),
perhaps with water occupying otherwise vacant coordination
sites. Based on the absence of a CT band in the UV-visible
spectra under these conditions, it follows that this species cor-
responds to a partially filled 3H site with a distorted pentaco-
ordinated geometry.
Beyond 0.23 eq of Co(II), the BcII saturation-resistant signal

ceased to increase in intensity, and a new signal (termed
“Axial”) was elicited, which appeared to grow linearly with
added Co(II) until 1 eq of Co(II). This signal ceased to increase
in intensity beyond 1 eq of Co(II), and further additions of
Co(II) elicited a third signal, indistinguishable from that of
Co(II) in buffer. A plot (Fig. 3B) of the total spin density during
the EPR titration versus the Co(II) equivalents added reveals a
steady growth until the addition of �1 Co(II) equivalent. Then
the spin density is almost constant when the Co(II)/BcII ratio is
between 1 and 1.8, suggesting the accumulation of an EPR-
silent species. This accumulation coincidedwith the steady dis-
appearance of the BcII axial signal between 1.04 and 1.82 eq of
Co(II), with the balance of the spectral densitymade upof resid-
ual BcII saturation-resistant signal and the signal from “free”
Co(II). Beyond 2 eq of Co(II), the only change in the spectrum
upon addition of Co(II) is increased intensity because of free
Co(II). The simplest explanation of these phenomena is the
formation of a dinuclear center upon the addition of between 1
and 2 eq of Co(II), with only the S � 0 state significantly popu-
lated. Thus, EPRdata provide a direct evidence of the formation
of a di-Co(II) site in D120S BcII.
Structural Characterization of D120S BcII—We obtained

crystals of D120S BcII that diffracted to 1.95 Å. The overall
structure in the mutant is preserved compared with the WT
protein, with the characteristic ��/�� fold of all M�Ls. B1
M�Ls are characterized by a mobile loop spanning residues
59–66. No electron density could be traced for this loop in this
mutant, suggesting that themobile features are preserved. Data
processing statistics are summarized in Table 2.

The active site of D120S BcII shows two bound Zn(II) ions,
resembling the dinuclear site found in the native enzyme (Fig.
4A). One of the Zn(II) ions is bound to His-116, His-118, His-

FIGURE 3. EPR titration of apo-D120S BcII with Co(II). A, X-band EPR titra-
tion of apo-D120S BcII with Co(II). Intensities are shown normalized for Co(II)
concentration. B, EPR-detected Co(II) (solid circles) was quantified by double
integration of EPR spectra with respect to Co(II) in 50% 10 mM HEPES buffer,
pH 7.5, 50% glycerol. The dashed line corresponds to the expected behavior
where all added Co(II) is EPR-detectable.
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196, and a solvent molecule (at a distance of 2.24 Å), in the
canonical 3H site. The second Zn(II) is located in a position
similar to that in the DCH site of WT BcII. This metal ion
clearly had an occupancy lower than 100%, but because of the
limited resolution of the data, it was not possible to refine its
occupancy and temperature factor simultaneously. With occu-
pancy fixed at 0.5, the temperature factor refined to a value
close to those of the surrounding protein ligand atoms. Confir-
mation thatZn2 indeedhas lower occupancy, rather than a high
temperature factor, comes from the observation of residual
positive electron density for His-263, at a position that in other
WTBcII data sets andmutants is associatedwith the absence of
Zn2 (see for example Ref. 50).
Although the Zn2 ligands Cys-221 andHis-263 superimpose

very well, the position of the Zn2 ion itself is shifted by �1 Å
compared with the DCH site in the WT enzyme (Fig. 4B),
resulting in a longer zinc-zinc distance (4.24 Å compared with
3.8 Å). Cys-221 and His-263 bind to Zn(II) with typical bond
distances (2.21 and 2.09 Å, respectively), whereas the engi-
neered residue Ser-120 is oriented in a similar position as Asp-
120 in WT BcII, but it is not able to bind the metal ion, its
oxygen atom being at 4.71 Å from the metal ion. Instead, a new
watermolecule (Wat-X) becomes a zinc ligand (Zn–Odistance,
2.20 Å). This solvent molecule forms a hydrogen bond with
Ser-120, which thus becomes a second shell ligand of the engi-
neeredmetal site (Fig. 4A). A secondwatermolecule is bound to
Zn2 at 2.33 Å in a similar position to the Wat-2 ligand in the
native enzyme. The coordination geometry of the Zn2 site is
thus distorted compared with that of WT BcII.
Other important residues in the hydrogen bond network of

the BcII active site are Arg-121 and Lys-224. Arg-121maintains
the same position as in WT BcII, conserving all the H-bonding
interactions present in the native enzyme (Asp-84, Ser-69, and
Gly-262), except that with Asp-120. The guanidinium group of
Arg-121 is far from theOHmoiety of Ser-120 in themutant, but
instead forms an H-bond withWat-X, the new Zn2 ligand (Fig.

4A). Lys-224 has been refined to two possible conformations
with 50% occupancy. In both of them, compared withWTBcII,
its amino group is able to directly interactwith the secondwater
ligand of Zn2 (Wat-2).

DISCUSSION

Asp-120 is fully conserved in all M�Ls, despite the structural
and functional diversity among the different enzymes belong-
ing to this family. Mutagenesis studies on B1 (BcII, CcrA, and
IMP-1) and B3 enzymes (L1) have already shown that substitu-
tion of Asp-120 by other residues gives rise to poorly active
enzymes (18–20, 51). Theoretical studies on B1 and B2
enzymes have also suggested a central role of Asp-120 in catal-
ysis (23, 25, 27, 28, 52). However, the precise role of this residue
is still matter of debate. In this work we have performed an
enzymatic characterization of four point mutants of the M�L
BcII at position 120.We have also studied the Co(II) derivatives

FIGURE 4. Structure of the active site of D120S BcII. A, active site of D120S
BcII, including the metal ligands and key residues in the active site. B, com-
parison of the active sites of D120S (green) and WT BcII (red). The larger spheres
represent Zn(II) ions, and the smaller spheres represent water molecules.

TABLE 2
Crystallographic data collection and refinement statistics

Diffraction data
Resolution (Å) 1.95
Unit cell a � 53.39 Å, b � 61.97 Å,

c � 69.57 Å, � � 93.28°
No. of unique reflections 16,580
Completeness (%) (2.00 to 1.95 Å) 99.9 (99.9)
Rmerge (%) 7.5 (31.7)
I/�(I) 7.6 (2.3)

Refinement
Resolution limits (Å) 31.0 to 1.95
R (%, 95% reflections) 14.6
Rfree (%, 5% reflections) 22.1
Deviations
Bond lengths (Å) 0.013
Bond angles (°) 1.366

Mean B factors
Main-chain atoms (Å2) 25.44
Side-chain atoms (Å2) 26.98
Zinc atoms (Å2) 22.02
Hetero atoms (Å2) 19.47
Water atoms (Å2) 37.27

Ramachandran plot
Favored (%, number) 92.6, 176
Additional allowed (%, number) 6.8, 13
Generously allowed (%, number) 0, 0
Disallowed (%, number) 0.5, 1
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of these mutants and solved the crystal structure of the least
active mutant D120S.
All mutants in the position 120 show diminished lactamase

capabilities compared with WT BcII. Despite differences
depending on the particular substrate, the general activity trend
isWT � D120E � D120N � D120Q �� D120S. D120E is 2–70
times less active than the native enzyme, whereas D120N is
30–100 times less active than WT BcII. The activity of D120Q
is decreased by a factor of 10–2000, whereas D120S is by far the
least active mutant.
The activity trend toward nitrocefin is WT � D120N �

D120E �� D120Q � D120S. The effect on D120N is mostly
because of an increased Km value, whereas D120S displays a
drastic decrease on the kcat value. However, the observed SKIE
is normal for all mutants, revealing that the rate-limiting step is
a proton transfer in all cases. Thus, because kcat (involving a
proton transfer) is not significantly affected inD120N, it is quite
clear that Asp-120 is not the proton donor in the rate-deter-
mining step. This is in agreement with the results from Garrity
et al. (19) for the M�L L1 from subclass B3 and theoretical
calculations on CcrA (28).
Nitrocefin hydrolysis byCcrA andL1proceedswith accumu-

lation of an anionic intermediate that is favored by the �-delo-
calized dinitrostyryl moiety unique to this substrate (53, 54). In
CcrA and L1, the rate-determining step for nitrocefin hydroly-
sis is the protonation of the anionic intermediate. Mutation of
Asp-120 in these enzymes still gives rise to a normal solvent
kinetic isotope effect for nitrocefin hydrolysis, in agreement
with our data on Asp-120 BcII mutants. However, because the
mechanism of nitrocefin hydrolysis is poised by the stabiliza-
tion of the anionic intermediate, we also measured the solvent
kinetic isotope effect in the hydrolysis of cefotaxime, a clini-
cally useful cephalosporin. Kinetic evidence (55), recently
supported by theoretical calculations (28), suggests that
cefotaxime hydrolysis by dinuclear B1 M�Ls takes place in a
single-step reaction, i.e.without tetrahedral or anionic inter-
mediate accumulation.
For cefotaxime hydrolysis, the activity trend is WT BcII �

D120E � D120N � D120Q �� D120S. In all cases kcat is
reduced, and inD120S, the poor activity is due both to a low kcat
and a highKm values. The SKIE observed forWTBcII and for all
the Asp-120 mutants is similar to that observed for nitrocefin
hydrolysis. This allows us to conclude that the observed SKIE is
a general effect, and not a peculiarity of nitrocefin.
D120E BcII is themost activemutant against cefotaxime and

imipenem. A Glu residue in this position may act as a metal
ligand (despite altering the position of Zn2), as a general base,
or proton donor and may also be involved in a hydrogen bond
network as the native enzyme. The observed activity ratios
between D120E and D120Q (which ranges only from 1 to 30)
are even lower than those betweenWTBcII (D120) andD120N.
Because both cases entail the replacement of an acidic function
by an isosteric amide group, we can definitely discard the pos-
sibility that residue 120 is the proton donor in the rate-limiting
step. In fact, both mutants D120E and D120Q display almost
the same catalytic efficiency toward penicillinG and imipenem.
Although Glu-120 and Gln-120 may position Zn2 in a similar

manner, Glu-120 is a stronger ligand perhaps explaining why
this is the more active of the two mutants.
From themechanistic point of view, �-lactam hydrolysis can

be dissected into two steps (see Scheme 1); the nucleophilic
attack to the lactam carbonyl group, and the C–N bond scis-
sion, which can occur simultaneously with protonation of the
bridging nitrogen atom. So far, no evidence of accumulation of
the tetrahedral intermediate formed in the first step has been
found in any studied M�L (in contrast with the situation met
for serine-�-lactamases). In addition, all mechanistic studies in
B1, B2, and B3 have revealed normal solvent kinetic isotope
effects (Dkcat � 1), suggesting that the rate-determining step
involves a proton transfer (18, 21, 35, 54). At the same time, this
allows us to discard the possibility that the nucleophilic attack
of a metal-bound water is rate-limiting, because it should give
rise to an inverse isotope effect (Dkcat � 1). This picture clearly
suggests that the nucleophilic attack is fast enough so that it is
not possible to distinguish kinetically the two steps (28, 55, 56).
Asp-120 has been proposed to orient and polarize the attack-

ing nucleophile (19, 26, 27, 57). If thiswere the onlymechanistic
role of Asp-120, its removal would be expected to slow down
significantly the step involving the nucleophilic attack, and we
might expect to detect inverse isotope effects. In D120S BcII,
themain cause of the poor catalytic efficiency is a 400–800-fold
decrease in kcat, which implies an increase in the activation
energy of �4 kcal/mol. But even for this mutant, the rate-de-
termining step also involves a proton transfer, as in WT BcII
and in the other mutants herein described. This suggests that
nucleophile activation is not the major role of Asp-120 even if
(as suggested by Crowder and co-workers (19)) the effect can-
not be neglected.
In an attempt to better discern the role of Asp-120, we per-

formed a detailed structural study of the least active mutant,
D120S. UV-visible and EPR spectroscopy of Co(II)-substituted
D120S reveals that this enzyme is able to accommodate a
dinuclear center. This is confirmed by the crystal structure of
Zn(II) D120S. In this structure, the coordination geometry of
the Zn1 site is preserved, except for a larger Zn1-Wat-1 dis-
tance. This is in agreement with the absorption spectroscopy
data in theCo(II)-substitutedmutants, which revealminor per-
turbations in the d-d bands attributed to the Co(II) ion in the
3H site. The position of Zn2 is modified by the absence of Asp-
120, and the metal ion becomes more tightly bound to Cys-221
and His-263, moving away from Zn1 and binding an additional
solvent molecule to complete its coordination sphere (Fig. 4).
Thus, the major changes in the active site in this mutant are
limited to the Zn2 site. These changes are also accompanied by
a different orientation of the side chain of Lys-224 that
(together with Zn2) has been implicated in substrate binding by
interaction with the carboxylate moiety conserved in all �-lac-
tam antibiotics (10, 11, 13, 18).
The low catalytic efficiency of D120S BcII is also because of a

5–10-fold increase in Km values for all tested substrates. Lys-
224 is involved in an H-bond interaction with Wat-2 in D120S
BcII andmight interact less efficiently with the substrate, hence
making substrate binding less favorable. In addition, Zn2 is
shifted farther from Zn1. Thus, if the main anchoring point for
substrate binding is provided by Zn2 and Lys-224, any bound
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substrate would be incorrectly positioned with respect to the
nucleophile coming from the Zn1 site. This provides a struc-
tural basis for the observed effects on the kcat and Km values in
D120S BcII. These results are in agreement with those from
Crowder and co-workers (19), because the same mutation on
L1 gave rise to amono-Zn(II) enzymeunable to bind substrates.
B3 lactamases lack Lys-224, thus Zn2 is expected to represent
the main substrate-binding element for M�Ls of this subclass
(15). If so, Zn2 plays a similar role in this respect in B1 and B3
enzymes.
Recent crystallographic studies have reported the trapping of

hydrolyzed products by CphA (a B2 M�L) (16) and L1 (a B3
M�L) (58). In both cases, the bridging nitrogen atom of the
hydrolyzed �-lactam moiety is bound to Zn2, suggesting a role
for this metal ion in polarizing the C–N bond for cleavage after
the nucleophilic attack has taken place. Thus, correct position-
ing of Zn2 should be essential for this step to occur efficiently.
This is in line with a recent theoretical study (28) that stresses
the role of Zn2 in orienting a water molecule as a proton donor
in the rate-determining step of the catalytic mechanism. We
have previously shown that Asp-120 becomes protonated at
low pH, thus detaching from Zn2 that moves away from its
location in the structure at neutral pH, leading to enzyme inac-
tivation (50). Thus, the effect herein observed is similar to the
one triggered by Asp-120 protonation at acidic pH. We there-
fore propose that the main role of Asp-120 is to act as a strong
Zn2 ligand defining its location in the active site. Based on a
detailed comparison of different B1 lactamase structures, Mur-
phy et al. (59) have recently suggested that the precise position
ofAsp-120 is essential in defining the affinity for Zn2, providing
further support to this hypothesis.
The broad substrate spectrum of B1M�Ls is consistent with

the finding of a broad and shallow active site that allows binding
and hydrolysis of diverse �-lactam compounds. Thus, as
already highlighted (6), the substrate binding and catalytic fea-
tures of these enzymes are determined by the positioning of the
two Zn(II) ions in the active site. Asp-120 is a strong metal
ligand, and its mutation significantly alters the Zn2 location as
we have shown here, resulting in impaired lactamase activity.
This proposal is fully consistent with the mutagenesis experi-
ments on other M�Ls. Taken together, these results support
the idea that the Zn2 site (present in all M�Ls) is necessary for
maximal catalytic efficiency in this class of enzymes.

Acknowledgment—Roberto Steiner is thanked for helpful discussions
on the structure refinement.
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