64 research outputs found
Emerging role of the pentose phosphate pathway in hepatocellular carcinoma
In recent years, there has been a revival of interest in metabolic changes of cancer cells as it has been noticed that malignant transformation and metabolic reprogramming are closely intertwined. The pentose phosphate pathway (PPP) is one of the fundamental components of cellular metabolism crucial for cancer cells. This review will discuss recent findings regarding the involvement of PPP enzymes in several types of cancer, with a focus on hepatocellular carcinoma (HCC). We will pay considerable attention to the involvement of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Subsequently, we discuss the inhibition of the PPP as a potential therapeutic strategy against cancer, in particular, HCC
Diverse MicroRNAs-mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia
OBJECTIVES: Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown. MATERIALS AND METHODS: Next generation sequencing and Illumina microarray were used to profile microRNA and mRNA expression in CDâ1Â mice livers 1, 3 and 6Â h after 2/3 partial hepatectomy (PH) or a single dose of TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Ingenuity pathway and DAVID analyses were performed to identify deregulated pathways. MultiMiR analysis was used to construct microRNAâmRNA networks. RESULTS: Following PH or TCPOBOP we identified 810 and 527Â genes, and 102 and 10Â miRNAs, respectively, differentially expressed. Only 20Â genes and 8Â microRNAs were shared by the two conditions. Many miRNAs targeting negative regulators of cell cycle were downregulated early after PH, concomitantly with increased expression of their target genes. On the contrary, negative regulators were not modified after TCPOBOP, but Ccnd1 targeting miRNAs, such as miRâ106bâ5p, were downregulated. CONCLUSIONS: While miRNAs targeting negative regulators of the cell cycle are downregulated after PH, TCPOBOP caused downregulation of miRNAs targeting genes required for cell cycle entry. The enhanced Ccnd1 expression may explain the more rapid entry into the S phase of mouse hepatocytes following TCPOBOP
Induction of autophagy promotes the growth of early preneoplastic rat liver nodules
Although inhibition of autophagy has been implicated in the onset and progression of cancer cells, it is still unclear whether its dysregulation at early stages of tumorigenesis plays an oncogenic or a tumor suppressor role. To address this question, we employed the Resistant-Hepatocyte rat model to study the very early stages of hepatocellular carcinoma (HCC) development. We detected a different autophagyrelated gene expression and changes in the ultrastructural profile comparing the most aggressive preneoplastic lesions, namely those positive for the putative progenitor cell marker cytokeratin-19 (KRT-19) with the negative ones. The ultrastructural and immunohistochemical analyses of KRT-19-positive preneoplastic hepatocytes showed the presence of autophagic vacuoles which was associated with p62, Ambra1 and Beclin1 protein accumulation suggesting that a differential modulation of autophagy occurs at early stages of the oncogenesis in KRT-19-positive vs negative lesions. We observed an overall decrease of the autophagy-related genes transcripts and a strong up-regulation of miR-224 in the KRT-19-positive nodules. Interestingly, the treatment with the autophagy inducer, Amiodarone, caused a marked increase in the proliferation of KRT-19 positive preneoplastic lesions associated with a strong increase of their size; by contrast, Chloroquine, an inhibitor of the autophagic process, led to their reduction. These results show that autophagy modulation is a very early event in hepatocarcinogenesis and is restricted to a hepatocytes subset in the most aggressive preneoplastic lesions. Our findings highlight the induction of autophagy as a permissive condition favouring cancer progression indicating in its inhibition a therapeutic goal to interfere with the development of HC
Measurements of doses from photon beam irradiation and scattered neutrons in an anthropomorphic phantom model of prostate cancer: A comparison between 3DCRT, IMRT and tomotherapy
Introduction. The rapid development of new radiotherapy technologies, such as intensity modulated radiotherapy (IMRT) or tomotherapy, has resulted in the capacity to deliver a more homogenous dose in the target. However, the higher doses associated with these techniques are a reason for concern because they may increase the dose outside the target. In the present study, we compared 3DCRT, IMRT and tomotherapy to assess the doses to organs at risk (OARs) resulting from photon beam irradiation and scattered neutrons. Material and methods. The doses to OARs outside the target were measured in an anthropomorphic Alderson phantom using thermoluminescence detectors (TLD 100) 6Li (7.5%) and 7Li (92.5%). The neutron fluence rate [cm-2·s-1] at chosen points inside the phantom was measured with gold foils (0.5 cm diameter, mean surface density of 0.108 g/cm3). Results. The doses [Gy] delivered to the OARs for 3DCRT, IMRT and tomotherapy respectively, were as follows: thyroid gland (0.62 ± 0.001 vs. 2.88 ± 0.004 vs. 0.58 ± 0.003); lung (0.99 ± 0.003 vs. 4.78 ± 0.006 vs. 0.67 ± 0.003); bladder (80.61 ± 0.054 vs. 53.75 ± 0.070 vs. 34.71 ± 0.059); and testes (4.38 ± 0.017 vs. 6.48 ± 0.013 vs. 4.39 ± 0.020). The neutron dose from 20 MV X-ray beam accounted for 0.5% of the therapeutic dose prescribed in the PTV. The further from the field edge the higher the contribution of this secondary radiation dose (from 8% to ~45%). Conclusion. For tomotherapy, all OARs outside the therapeutic field are well-spared. In contrast, IMRT achieved better sparing than 3DCRT only in the bladder. The photoneutron dose from the use of high-energy X-ray beam constituted a notable portion (0.5%) of the therapeutic dose prescribed to the PTV
Distinct Mechanisms Are Responsible for Nrf2-Keap1 Pathway Activation at Different Stages of Rat Hepatocarcinogenesis
Activation of the Nrf2-Keap1 pathway, the main intracellular defense against environmental stress, has been observed in several human cancers, including hepatocellular carcinoma (HCC). Here, we assessed whether distinct mechanisms of activation may be involved at different stages of hepatocarcinogenesis. We adopted an experimental model consisting of treatment with diethylnitrosamine (DENA) followed by a choline-devoid methionine-deficient (CMD) diet for 4 months. The CMD diet was then replaced with a basal diet, and the animals were killed at 6, 10 or 13 months after DENA injection. Nrf2 activation occurred at early steps of hepatocarcinogenesis and persisted throughout the tumorigenic process. WhileNrf2mutations were extremely frequent at early steps (90%), their incidence diminished with the progression to malignancy (25%). Conversely, while p62 was almost undetectable in early nodules, its accumulation occurred in HCCs, suggesting that Nrf2 pathway activation at late stages is mainly due to Keap1 sequestration by p62. We demonstrate that, in a model of hepatocarcinogenesis resembling human non-alcoholic fatty liver disease,Nrf2mutations are the earliest molecular changes responsible for the activation of the Nrf2-Keap1 pathway. The progressive loss of mutations associated with a concomitant p62 accumulation implies that distinct mechanisms are responsible for Nrf2-Keap1 pathway activation at different stages of hepatocarcinogenesis
Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis
Metabolic changes are associated with cancer, but whether they are just bystander effects of deregulated oncogenic signaling pathways or characterize early phases of tumorigenesis remains unclear. Here we show in a rat model of hepatocarcinogenesis that early preneoplastic foci and nodules that progress towards hepatocellular carcinoma (HCC) are characterized both by inhibition of oxidative phosphorylation (OXPHOS) and by enhanced glucose utilization to fuel the pentose phosphate pathway (PPP). These changes respectively require increased expression of the mitochondrial chaperone TRAP1 and of the transcription factor NRF2 that induces the expression of the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase (G6PD), following miR-1 inhibition. Such metabolic rewiring exclusively identifies a subset of aggressive cytokeratin-19 positive preneoplastic hepatocytes and not slowly growing lesions. No such metabolic changes were observed during non-neoplastic liver regeneration occurring after two/third partial hepatectomy. TRAP1 silencing inhibited the colony forming ability of HCC cells while NRF2 silencing decreased G6PD expression and concomitantly increased miR-1; conversely, transfection with miR-1 mimic abolished G6PD expression. Finally, in human HCC patients increased G6PD expression levels correlates with grading, metastasis and poor prognosis. Our results demonstrate that the metabolic deregulation orchestrated by TRAP1 and NRF2 is an early event restricted to the more aggressive preneoplastic lesions
YAP activation is an early event and a potential therapeutic target in liver cancer development
Background and Aims: Although the growth suppressor Hippo pathway has been implicated in hepatocellular carcinoma (HCC) pathogenesis, it is unknown at which stage of hepatocarcinogenesis its dysregulation occurs. We investigated in early rat and human preneoplastic lesions whether overexpression of the transcriptional co-activator Yes-associated protein (YAP) is an early event.
Methods: The experimental model used is the Resistant-Hepatocyte (R-H) rat model. Gene expression was determined by qRT-PCR or immunohistochemistry. Forward genetic experiments were performed in human HCC cells and in murine oval cells.
Results All foci of preneoplastic hepatocytes generated in rats 4 weeks after diethylnitrosamine (DENA) treatment, displayed YAP accumulation. This was associated with down-regulation of the ÎČ-TRCP ligase, known to mediate YAP degradation, and of microRNA-375, targeting YAP. YAP accumulation was paralleled by up-regulation of its target genes. Increased YAP expression was also observed in early dysplastic nodules and adenomas in humans. Animal treatment with verteporfin (VP), which disrupts the formation of the YAPâTEAD complex, significantly reduced preneoplastic foci and oval cell proliferation. In vitro experiments confirmed that VP-mediated YAP inhibition impaired cell growth in HCC and oval cells; notably, oval cell transduction with wild type or active YAP conferred tumorigenic properties in vitro and in vivo.
Conclusions: These results suggest that i) YAP overexpression is an early event in rat and human liver tumorigenesis; ii) it is critical for the clonal expansion of carcinogen-initiated hepatocytes and oval cells, and, iii) VP-induced disruption of YAP-TEAD interaction may provide an important approach for the treatment of YAP-overexpressing cancers
Indium(II) chloride as a precursor in the synthesis of ternary (AgâInâS) and quaternary (AgâInâZnâS) nanocrystals
A new indium precursor, namely, indium(II)
chloride, was tested as a precursor in the synthesis of ternary
AgâInâS and quaternary AgâInâZnâS nanocrystals. This new
precursor, being in fact a dimer of Cl2InâInCl2 chemical structure,
is significantly more reactive than InCl3, typically used in the
preparation of these types of nanocrystals. This was evidenced by
carrying out comparative syntheses under the same reaction
conditions using these two indium precursors in combination with
the same silver (AgNO3) and zinc (zinc stearate) precursors. In
particular, the use of indium(II) chloride in combination with low
concentrations of the zinc precursor yielded spherical-shaped (D =
3.7â6.2 nm) AgâInâZnâS nanocrystals, whereas for higher
concentrations of this precursor, rodlike nanoparticles (L = 9â10
nm) were obtained. In all cases, the resulting nanocrystals were enriched in indium (In/Ag = 1.5â10.3). Enhanced indium precursor
conversion and formation of anisotropic, longitudinal nanoparticles were closely related to the presence of thiocarboxylic acid type of
ligands in the reaction mixture. These ligands were generated in situ and subsequently bound to surfacial In(III) cations in the
growing nanocrystals. The use of the new precursor of enhanced reactivity facilitated precise tuning of the photoluminescence color
of the resulting nanocrystals in the spectral range from ca. 730 to 530 nm with photoluminescence quantum yield (PLQY) varying
from 20 to 40%. The fabricated AgâInâS and AgâInâZnâS nanocrystals exhibited the longest, reported to date,
photoluminescence lifetimes of âŒ9.4 and âŒ1.4 ÎŒs, respectively. It was also demonstrated for the first time that ternary (AgâInâ
S) and quaternary (AgâInâZnâS) nanocrystals could be applied as efficient photocatalysts, active under visible light (green)
illumination, in the reaction of aldehydes reduction to alcohols
Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming
The limited therapeutic options available for hepatocellular carcinoma (HCC) make mandatory to find alternative effective treatments for this tumor. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of hepatocellular carcinomas (HCCs)
- âŠ