284 research outputs found

    A natural history of the deep-sea aplacophoran Prochaetoderma yongei and its relationship to confamilials (Mollusca, Prochaetodermatidae)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 56 (2009): 1856-1864, doi:10.1016/j.dsr2.2009.05.026.Previously published studies are woven together into a natural history of a deep-sea aplacophoran mollusc species, Prochaetoderma yongei Scheltema, 1985, and its confamilial species in the Prochaetodermatidae. This amphi-Atlantic species occurs in sometimes great numbers at upper bathyal depths, rivaling polychaetes in numerical dominance. It appears to be an opportunist, with wide geographic and depth distribution, rapid development from lecithotrophic larva to settlement and maturity, and omnivory. A short illustrated morphological description using characters useful for identifying all prochaetodermatid species should prove useful to nontaxonomists whose business is the deep-sea benthic fauna

    Introductory clifford analysis

    Get PDF
    In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications

    Regeneration in the enteropneust hemichordate, Ptychodera flava, and its evolutionary implications

    Get PDF
    Hemichordates are marine invertebrates that are closely related to chordates, but while their body plans are comparable to those of chordates, they possess a remarkable capacity for regeneration, even as adults. A small fragment is sufficient to form a complete individual. Unlike echinoderms, their larvae transform directly into adults; therefore, hemichordate systems offer clear morphological and molecular parallels between regeneration and development. Morphological events in regeneration are generally similar to organogenesis in juveniles. Nonetheless, comparative analysis of gene expression in these two morphological phenomena suggests that hemichordate regeneration is regulated by regeneration-specific mechanisms, as well as by developmental mechanisms. Dependency upon resident pluripotent/multipotent stem cells is a significant difference in metazoan regeneration, and such stem cells are essential for regeneration in many lineages. Based on the present gene expression study, regeneration in acorn worms is more closely related to that in vertebrates, because it employs endogenous stem cell-independent transdifferentiation

    Studies on germ cells. I. The history of the germ cells in insects with special reference to the Keimbahn-determinants. II. The origin and significance of the Keimbahn-determinants in animals

    Full text link
    No Abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50235/1/1050250302_ftp.pd

    Global Diversity of Ascidiacea

    Get PDF
    The class Ascidiacea presents fundamental opportunities for research in the fields of development, evolution, ecology, natural products and more. This review provides a comprehensive overview of the current knowledge regarding the global biodiversity of the class Ascidiacea, focusing in their taxonomy, main regions of biodiversity, and distribution patterns. Based on analysis of the literature and the species registered in the online World Register of Marine Species, we assembled a list of 2815 described species. The highest number of species and families is found in the order Aplousobranchia. Didemnidae and Styelidae families have the highest number of species with more than 500 within each group. Sixty percent of described species are colonial. Species richness is highest in tropical regions, where colonial species predominate. In higher latitudes solitary species gradually contribute more to the total species richness. We emphasize the strong association between species richness and sampling efforts, and discuss the risks of invasive species. Our inventory is certainly incomplete as the ascidian fauna in many areas around the world is relatively poorly known, and many new species continue to be discovered and described each year

    A critical appraisal of appendage disparity and homology in fishes

    Full text link
    Fishes are both extremely diverse and morphologically disparate. Part of this disparity can be observed in the numerous possible fin configurations that may differ in terms of the number of fins as well as fin shapes, sizes and relative positions on the body. Here, we thoroughly review the major patterns of disparity in fin configurations for each major group of fishes and discuss how median and paired fin homologies have been interpreted over time. When taking into account the entire span of fish diversity, including both extant and fossil taxa, the disparity in fin morphologies greatly complicates inferring homologies for individual fins. Given the phylogenetic scope of this review, structural and topological criteria appear to be the most useful indicators of fin identity. We further suggest that it may be advantageous to consider some of these fin homologies as nested within the larger framework of homologous fin‐forming morphogenetic fields. We also discuss scenarios of appendage evolution and suggest that modularity may have played a key role in appendage disparification. Fin modules re‐expressed within the boundaries of fin‐forming fields could explain how some fins may have evolved numerous times independently in separate lineages (e.g., adipose fin), or how new fins may have evolved over time (e.g., anterior and posterior dorsal fins, pectoral and pelvic fins). We favour an evolutionary scenario whereby median appendages appeared from a unique field of competence first positioned throughout the dorsal and ventral midlines, which was then redeployed laterally leading to paired appendages.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151971/1/faf12402_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151971/2/faf12402.pd

    Phylogeny of the Aplousobranchia (Tunicata: Ascidiacea)

    Full text link
    corecore