9 research outputs found

    VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting

    Get PDF
    Although our understanding of the molecular regulation of adult neovascularization has advanced tremendously, vascular-targeted therapies for tissue ischemia remain suboptimal. The master regulatory transcription factors of the hypoxia-inducible factor (HIF) family are attractive therapeutic targets because they coordinately up-regulate multiple genes controlling neovascularization. Here, we used an inducible model of epithelial HIF-1 activation, the TetON-HIF-1 mouse, to test the requirement for VEGF in HIF-1 mediated neovascularization. TetON-HIF-1, K14-Cre, and VEGF^(flox/flox) alleles were combined to create TetON-HIF-1:VEGFΔ mice to activate HIF-1 and its target genes in adult basal keratinocytes in the absence of concomitant VEGF. HIF-1 induction failed to produce neovascularization in TetON-HIF-1:VEGFΔ mice despite robust up-regulation of multiple proangiogenic HIF targets, including PlGF, adrenomedullin, angiogenin, and PAI-1. In contrast, endothelial sprouting was preserved, enhanced, and more persistent, consistent with marked reduction in Dll4-Notch-1 signaling. Optical-resolution photoacoustic microscopy, which provides noninvasive, label-free, high resolution, and wide-field vascular imaging, revealed the absence of both capillary expansion and arteriovenous remodeling in serially imaged individual TetON-HIF-1:VEGFΔ mice. Impaired TetON-HIF-1:VEGFΔ neovascularization could be partially rescued by 12-O-tetradecanoylphorbol-13-acetate skin treatment. These data suggest that therapeutic angiogenesis for ischemic cardiovascular disease may require treatment with both HIF-1 and VEGF

    Optical-resolution photoacoustic microscopy of angiogenesis in a transgenic mouse model

    Get PDF
    A major obstacle in studying angiogenesis is the inability to noninvasively image neovascular development in an individual animal. We applied optical-resolution photoacoustic microscopy (OR-PAM) to determine the kinetics of hypoxia-inducible factor-1 (HIF-1)-mediated angiogenesis in a transgenic mouse model. During continuous 30-day activation of HIF-1α, we used OR-PAM to monitor alterations in microvasculature in transgenic mice compared to nontransgenic mice. OR-PAM has demonstrated the potential to precisely monitor antiangiogenic therapy of human cancers, allowing for rapid determinations of therapeutic efficacy or resistance

    VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting

    Get PDF
    Although our understanding of the molecular regulation of adult neovascularization has advanced tremendously, vascular-targeted therapies for tissue ischemia remain suboptimal. The master regulatory transcription factors of the hypoxia-inducible factor (HIF) family are attractive therapeutic targets because they coordinately up-regulate multiple genes controlling neovascularization. Here, we used an inducible model of epithelial HIF-1 activation, the TetON-HIF-1 mouse, to test the requirement for VEGF in HIF-1 mediated neovascularization. TetON-HIF-1, K14-Cre, and VEGF^(flox/flox) alleles were combined to create TetON-HIF-1:VEGFΔ mice to activate HIF-1 and its target genes in adult basal keratinocytes in the absence of concomitant VEGF. HIF-1 induction failed to produce neovascularization in TetON-HIF-1:VEGFΔ mice despite robust up-regulation of multiple proangiogenic HIF targets, including PlGF, adrenomedullin, angiogenin, and PAI-1. In contrast, endothelial sprouting was preserved, enhanced, and more persistent, consistent with marked reduction in Dll4-Notch-1 signaling. Optical-resolution photoacoustic microscopy, which provides noninvasive, label-free, high resolution, and wide-field vascular imaging, revealed the absence of both capillary expansion and arteriovenous remodeling in serially imaged individual TetON-HIF-1:VEGFΔ mice. Impaired TetON-HIF-1:VEGFΔ neovascularization could be partially rescued by 12-O-tetradecanoylphorbol-13-acetate skin treatment. These data suggest that therapeutic angiogenesis for ischemic cardiovascular disease may require treatment with both HIF-1 and VEGF

    Myeloid Cell Independent Conditional HIF-1 Induced Multistage Angiogenesis

    No full text
    Mentor: Jeffrey M. Arbeit From the Washington University Undergraduate Research Digest: WUURD, Volume 6, Issue 1, Fall 2010. Published by the Office of Undergraduate Research. Henry Biggs, Director of Undergraduate Research and Associate Dean in the College of Arts & Sciences; Joy Zalis Kiefer, Undergraduate Research Coordinator, Co-editor, and Assistant Dean in the College of Arts & Sciences; Kristin Sobotka, Editor

    Myeloid Cell Independent Conditional HIF-1 Induced Multistage Angiogenesis

    No full text
    From the Washington University Senior Honors Thesis Abstracts (WUSHTA), Volume 2, Spring 2010. Published by the Office of Undergraduate Research. Henry Biggs, Director, Office of Undergraduate Research / Associate Dean, College of Arts & Sciences; Joy Zalis Kiefer, Undergraduate Research Coordinator / Assistant Dean in the College of Arts & Sciences; E. Holly Tasker, Editor. Mentors: Sunday S. Oladipup and Jeffrey M. Arbei

    BRAF V600E

    No full text

    Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence

    Get PDF
    Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1–recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells

    Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer

    No full text
    Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer
    corecore