25 research outputs found

    Dynamics of a class A nonlinear mirror mode-locked laser

    Full text link
    Using a delay differential equation model we study theoretically the dynamics of a unidirectional class-A ring laser with a nonlinear amplifying loop mirror. We perform linear stability analysis of the CW regimes in the large delay limit and demonstrate that these regimes can be destabilized via modulational and Turing-type instabilities, as well as by an instability leading to the appearance of square-waves. We investigate the formation of square-waves and mode-locked pulses in the system. We show that mode-locked pulses are asymmetric with exponential decay of the trailing edge in positive time and faster-than-exponential (super-exponential) decay of the leading edge in negative time. We discuss asymmetric interaction of these pulses leading to a formation of harmonic mode-locked regimes.Comment: 9 pages

    Dynamical regimes in a class A model of a nonlinear mirror mode-locked laser

    Get PDF
    Using a simple delay differential equation model we study theoretically the dynamics of a unidirectional class-A ring laser with a nonlinear amplifying loop mirror. We perform analytical linear stability analysis of the CW regimes in the large delay limit and demonstrate that these regimes can be destabilized via modulational and Turing-type instabilities, as well as by a bifurcation leading to the appearance of square-waves. We investigate the formation of square-waves and mode-locked pulses in the system. We show that mode-locked pulses are very asymmetric with exponential decay of the trailing and superexponential growth of the leading edge. We discuss asymmetric interaction of these pulses leading to a formation of harmonic mode-locked regimes

    Relaxation oscillations suppression and undamping in a hybrid photonic crystal laser

    Get PDF
    As demand towards cloud-based services and high-performance computations grows, it imposes requirements on data center performance, and efficiency. Taking advantage of the mature CMOS process technology, and the fact that silicon is the basic material of electronics industry, silicon photonics makes possible production photonic integrated circuits that satisfy these requirements. Here we explore the short-cavity hybrid laser consisting of a III-V amplifier integrated with a silicon photonic crystal (PhC) cavity reflector by so-called butt-coupling approach. The laser possesses great stability characteristics meeting the criteria for data center interconnect applications. The PhC reflector having a Q-factor of 104 at the lasing wavelength 1535 nm can be considered as a narrow-bandwidth filter. The laser demonstrates single mode and eventless operation without any dynamics on the background, and smooth radiofrequency spectrum without evidence of relaxation oscillation frequency. The latter fact is beneficial for many applications, and indicates extremely high damping in PhC laser, where the photon cavity lifetime is greatly improved by the high-Q PhC cavity reflector. We confirm our experimental observations by theory based on delay differential equation model for a single-section semiconductor laser. We reveal the effective damping of the laser, when the detuning between the filter peak and the laser cavity mode is small, and the imaginary parts of the model eigenvalues equal zero. It is possible to undamp the relaxation oscillations forcing self-Q-switched operation in the laser owing to the cumulative action of the alpha-factor and the narrow filter. In conclusion, we experimentally and theoretically demonstrated that relaxation oscillations can be suppressed in the short-cavity semiconductor laser with a narrow intracavity frequency filter. Additionally, on the basis of our analysis we expect the undamping of relaxation oscillations, and self-pulsations when the cavity mode is detuned from the filter peak frequency. The results might be useful for applications in data communications.Publisher PD

    Bifurcation structure of a swept source laser

    Get PDF
    We numerically analyze a delay differential equation model of a short-cavity semiconductor laser with an intracavity frequency swept filter and reveal a complex bifurcation structure responsible for the asymmetry of the output characteristics of this laser. We show that depending on the direction of the frequency sweep of a narrowband filter, there exist two bursting cycles determined by different parts of a continuous-wave solutions branch

    Noise-induced broadening of a quantum-dash laser optical frequency comb

    Full text link
    Single-section quantum dash semiconductor lasers have attracted much attention as an integrated and simple platform for the generation of THz-wide and flat optical frequency combs in the telecom C-band. In this work, we present an experimental method allowing to increase the spectral width of the laser comb by the injection of a broadband optical noise from an external semiconductor optical amplifier that is spectrally overlapped with the quantum dash laser comb. The noise injection induces an amplification of the side modes of the laser comb which acquire a fixed phase relationship with the central modes of the comb. We demonstrate a broadening of the laser comb by a factor of two via this technique.Comment: 4 pages, 4 figure

    Effelsberg Monitoring of a Sample of RadioAstron Blazars: Analysis of Intra-Day Variability

    Full text link
    We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were performed with the Effelsberg 100-m radio telescope at 4.8\,GHz, focusing on the statistical properties of IDV in a relatively large sample of compact active galactic nuclei (AGN). We investigated the dependence of rapid (<<3 day) variability on various source properties through a likelihood approach. We found that the IDV amplitude depends on flux density and that fainter sources vary by about a factor of 3 more than their brighter counterparts. We also found a significant difference in the variability amplitude between inverted- and flat-spectrum radio sources, with the former exhibiting stronger variations. γ\gamma-ray loud sources were found to vary by up to a factor 4 more than γ\gamma-ray quiet ones, with 4σ\sigma significance. However a galactic latitude dependence was barely observed, which suggests that it is predominantly the intrinsic properties (e.g., angular size, core-dominance) of the blazars that determine how they scintillate, rather than the directional dependence in the interstellar medium (ISM). We showed that the uncertainty in the VLBI brightness temperatures obtained from the space VLBI data of the RadioAstron satellite can be as high as \sim70\% due to the presence of the rapid flux density variations. Our statistical results support the view that IDV at centimeter wavelengths is predominantly caused by interstellar scintillation (ISS) of the emission from the most compact, core-dominant region in an AGN.Comment: 23 pages, 9 figures, published online by MDPI Galaxie

    Highly reconfigurable hybrid laser based on an integrated nonlinear waveguide

    Get PDF
    The ability of laser systems to emit different adjustable temporal pulse profiles and patterns is desirable for a broad range of applications. While passive mode-locking techniques have been widely employed for the realization of ultrafast laser pulses with mainly Gaussian or hyperbolic secant temporal profiles, the generation of versatile pulse shapes in a controllable way and from a single laser system remains a challenge. Here we show that a nonlinear amplifying loop mirror (NALM) laser with a bandwidth-limiting filter (in a nearly dispersion-free arrangement) and a short integrated nonlinear waveguide enables the realization and distinct control of multiple mode-locked pulsing regimes (e.g., Gaussian pulses, square waves, fast sinusoidal-like oscillations) with repetition rates that are variable from the fundamental (7.63 MHz) through its 205th harmonic (1.56 GHz). These dynamics are described by a newly developed and compact theoretical model, which well agrees with our experimental results. It attributes the control of emission regimes to the change of the NALM response function that is achieved by the adjustable interplay between the NALM amplification and the nonlinearity. In contrast to previous square wave emissions, we experimentally observed that an Ikeda instability was responsible for square wave generation. The presented approach enables laser systems that can be universally applied to various applications, e.g., spectroscopy, ultrafast signal processing and generation of non-classical light states

    RadioAstron Space VLBI Imaging of the jet in M87: I. Detection of high brightness temperature at 22 GHz

    Full text link
    We present results from the first 22 GHz space very-long-baseline interferometric (VLBI) imaging observations of M87 by RadioAstron. As a part of the Nearby AGN Key Science Program, the source was observed in Feb 2014 at 22 GHz with 21 ground stations, reaching projected (u,v)(u,v)-spacings up to 11\sim11\,Gλ\lambda. The imaging experiment was complemented by snapshot RadioAstron data of M87 obtained during 2013--2016 from the AGN Survey Key Science Program. Their longest baselines extend up to 25\sim25\,Gλ\lambda. For all these measurements, fringes are detected only up to \sim2.8 Earth Diameter or \sim3 Gλ\lambda baseline lengths, resulting in a new image with angular resolution of 150μ\sim150\,\muas or 20\sim20 Schwarzschild radii spatial resolution. The new image not only shows edge-brightened jet and counterjet structures down to submilliarcsecond scales but also clearly resolves the VLBI core region. While the overall size of the core is comparable to those reported in the literature, the ground-space fringe detection and slightly super-resolved RadioAstron image suggest the presence of substructures in the nucleus, whose minimum brightness temperature exceeds TB,min1012T_{\rm B, min}\sim10^{12}\,K. It is challenging to explain the origin of this record-high TB,minT_{\rm B, min} value for M87 by pure Doppler boosting effect with a simple conical jet geometry and known jet speed. Therefore, this can be evidence for more extreme Doppler boosting due to a blazar-like small jet viewing angle or highly efficient particle acceleration processes occurring already at the base of the outflow.Comment: 27 pages, 13 figures, accepted for publication in Ap

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF
    Background: The phase III CLinical Evaluation Of Pertuzumab And TRAstuzumab (CLEOPATRA) trial established the combination of pertuzumab, trastuzumab and docetaxel as standard first-line therapy for human epidermal growth factor receptor 2 (HER2)-positive locally recurrent/metastatic breast cancer (LR/mBC). The multicentre single-arm PERtUzumab global SafEty (PERUSE) study assessed the safety and efficacy of pertuzumab and trastuzumab combined with investigator-selected taxane in this setting. Patients and methods: Eligible patients with inoperable HER2-positive LR/mBC and no prior systemic therapy for LR/mBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab and pertuzumab until disease progression or unacceptable toxicity. The primary endpoint was safety. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Prespecified subgroup analyses included subgroups according to taxane, hormone receptor (HR) status and prior trastuzumab. Exploratory univariable analyses identified potential prognostic factors; those that remained significant in multivariable analysis were used to analyse PFS and OS in subgroups with all, some or none of these factors. Results: Of 1436 treated patients, 588 (41%) initially received paclitaxel and 918 (64%) had HR-positive disease. The most common grade 653 adverse events were neutropenia (10%, mainly with docetaxel) and diarrhoea (8%). At the final analysis (median follow-up: 5.7 years), median PFS was 20.7 [95% confidence interval (CI) 18.9-23.1] months overall and was similar irrespective of HR status or taxane. Median OS was 65.3 (95% CI 60.9-70.9) months overall. OS was similar regardless of taxane backbone but was more favourable in patients with HR-positive than HR-negative LR/mBC. In exploratory analyses, trastuzumab-pretreated patients with visceral disease had the shortest median PFS (13.1 months) and OS (46.3 months). Conclusions: Mature results from PERUSE show a safety and efficacy profile consistent with results from CLEOPATRA and median OS exceeding 5 years. Results suggest that paclitaxel is a valid alternative to docetaxel as backbone chemotherapy. Exploratory analyses suggest risk factors that could guide future trial design

    The science case and challenges of space-borne sub-millimeter interferometry

    Get PDF
    Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10–20 microarcseconds (0.05–0.1 nanoradian). Further developments towards at least an order of magnitude “sharper” values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.</p
    corecore