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Bifurcation structure of a swept source laser
Anton V. Kovalev, Pavel S. Dmitriev, Andrei G. Vladimirov, Alexander Pimenov, Guillaume Huyet,

Evgeniy A. Viktorov

Abstract

We numerically analyze a delay differential equation model of a short-cavity semiconductor
laser with an intracavity frequency swept filter and reveal a complex bifurcation structure respon-
sible for the asymmetry of the output characteristics of this laser. We show that depending on the
direction of the frequency sweep of a narrowband filter, there exist two bursting cycles determined
by different parts of a continuous-wave solutions branch.

1 Introduction

Optical Coherence Tomography (OCT) has enabled the fast and reliable visualization of various tis-
sues for medical assessment [1]. Swept-Source OCT is a technology that relies on coherent lasers that
can scan hundreds of nanometers in a few microseconds to enable real time videos and, as a result,
has found a wide range of medical applications in areas such as ophthalmology or cardiology [2]. To
obtain such performance, researchers have developed novel frequency swept light sources, such as
Frequency Domain Mode-Locked Lasers [3], short external cavity lasers [4–7], MEMS Vertical Cavity
Surface Emitting Lasers (VCSELs) [8–11], multi-section semiconductor lasers [12], and photonic inte-
grated circuit devices [13]. The underlying operation principle of these devices relies on laser cavities
incorporating a broad band gain medium and a fast tuning mechanism. Semiconductor quantum well
active medium can be engineered to deliver broadband gain amplification, however, the development
of fast tuning mechanism is a challenge as it may degrade the laser emission. FDML lasers have
a kilometer long ring cavity containing an intracavity filter that is driven in resonance with the round
trip time. At the other extreme, VCSEL’s have a cavity length of a single optical wavelength and their
tunability is achieved by a slight modification of the cavity length.

Nonlinear dynamical regimes in FDML devices can be theoretically modeled by partial differential
equations governing the spatio-temporal evolution of the complex envelope of the electric field [14,15].
Another powerful method to describe these lasers is based on the use of delay differential equations
(DDEs) [16, 17]. In particular, the experimentally observed asymmetry in the output dynamics be-
tween the filter sweeping from shorter to longer wavelengths and the filter sweeping from longer to
shorter wavelengths has been successfully explained using the DDE FDML model [16]. It was shown
that instabilities observed in FDML lasers can be related to short- and long-wavelength modulation
instabilities commonly found in nonlinear spatially-distributed systems. The same model was able to
describe the appearance of the so-called “sliding frequency mode-locking” in short cavity frequency
swept lasers [18]. Shorter cavity length devices are appealing as comparably inexpensive and com-
pact swept OCT sources and have recently attracted significant attention [7, 11–13]. These lasers,
however, demonstrate wide range of dynamical regimes during the filter sweeping [18] detrimental
to the performance of OCT sources, which were observed only in numerical simulations. Therefore,
further analysis and understanding of the dynamical properties of such devices is important for the
improvement of their characteristics necessary for the future applications.
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Figure 1: Branch of CW solutions in a long cavity ((a), γ = 100) and short cavity ((b), γ = 0.25) laser.
Other parameter values are J = 10, κ = 0.35, and α = 5.

Unlike Ref. [16], where the asymmetry of the FDML laser was studied in the long cavity limit, in this
Letter we consider the case when the cavity length is relatively small and the free spectral range is
larger than the bandwidth of the tunable filter. We show that in this case the experimentally observed
asymmetry of the laser output with respect to sweep direction is related to the presence of a fold and
Andronov-Hopf bifurcations of a very asymmetric branch of continuous wave (CW) regimes. Further-
more, we present a detailed bifurcation analysis of the model equations, discuss coexisting dynamical
regimes such as longitudinal mode hopping, quasiperiodic pulsations and chaos, and compare the
results with those obtained earlier [16] for a long cavity laser.

2 The model

We consider a DDE model [16] for the normalized complex amplitude of the electrical field Ẽ and the
time-dependent dimensionless cumulative saturable gain G:

γ−1dẼ

dt
+ (1 + i∆) Ẽ =

√
κe

1−iα
2

GẼ (t− 1) , (1)

η−1dG

dt
= J −G− (eG − 1)

∣∣∣Ẽ (t− 1)
∣∣∣2 , (2)

where t ≡ t′/T , t′ is time, and T is equal to the cold cavity round trip time. The attenuation factor
κ describes the total non-resonant linear intensity losses per cavity round trip, α is the linewidth
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enhancement factor in the gain, and γ is the bandwidth of the intracavity spectral filtering multiplied by
the round trip time T . γ < 1 (� 1) corresponds to the short (long) cavity. J is the pump parameter,
and η = O(1) is the ratio of the cold cavity round trip time and the carrier density relaxation time.
The time-dependent parameter ∆ = ∆(t) defines the detuning between the central frequency of the
narrowband tunable filter and the reference frequency, which coincides with the frequency of one of
the laser modes. After the coordinate change Ẽ = Ee−i

∫ t
0 ∆(x)dx, Eqs. (1-2) are transformed into

γ−1dE

dt
+ E =

√
κe

1−iα
2

G−iφ(t)E (t− 1) , (3)

η−1dG

dt
= J −G− (eG − 1) |E (t− 1)|2 , (4)

where φ(t) = −i
∫ t
t−1

∆(x)dx. Note that Eqs. (3–4) are invariant with respect to the shifts φ →
φ+ 2πn, where n = 0,±1,±2 . . . is an integer number. Therefore, all bifurcation diagrams studied
here are 2π-periodic on φ.

We first consider Eqs. (3–4) for the static φ(t) = φ0 and define the CW cavity mode solution as
E =

√
Ise

iωt with time independent intensity Is, and the constant gainG = g. Different CW solutions
correspond to different longitudinal modes of the laser. The relation between the field intensity Is and
the value of the saturable gain g is given by

Is =
J − g
eg − 1

. (5)

By solving this equation with respect to the gain, g = g(Is), we obtain two values of the modal
frequency corresponding to a given value of the intensity Is:

ω = ±γ
[
κeg(Is) − 1

]
. (6)

Finally, substituting Eq. (6) into the transcendental equation

φ0 = −ω − αg(Is)

2
− arctan

(
ω

γ

)
+ 2πn, (7)

with n = 0,±1,±2 . . . , we get an implicit equation relating the intensity Is and the parameter φ0.
The branch of CW solutions defined by Eqs. (5–7) with n = 0 is shown in Fig. 1 for the case of long
cavity (a) and short cavity (b) laser. All other CW branches can be obtained by a shift φ0 → φ0 + 2πn
with integer n. It is seen that in a long cavity laser studied in [16], the CW branch is almost symmetric
with respect to the reflection φ0 → −φ0.

In a short cavity laser, the CW branch can be very asymmetric with a foldover, which is generally char-
acteristic for nonlinear resonators [19,20]. The fold bifurcation points in the Fig. 1(b), corresponding to
the extrema of the function φ0(ω) defined by (7), can be found by solving dφ0/dω = 0 and read:

ωLP = (−α±
√
α2 − 4γ(γ + 1))/2. (8)

Inequality α2 > 4γ (1 + γ) defines the condition for appearance of the foldover. One of the two fold
points defined by (8) corresponds to the small intensity and another to the large intensity, as can be
seen in the Fig. 1(b). The latter fold bifurcation is responsible for the stability loss of a CW regime in a
laser with adiabatically slowly increasing φ0.
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Figure 2: Numerical simulation of the model equations (3-4) displaying mode-hopping events in the
positive sweep direction. The frequency sweeping in the negative direction exhibits chaotic dynamics.
The zero point on the x-axis is the turning point of the sweep and the sweeping function φ(t) is shown
(in red) above the intensity. The parameters are: η = 1, γ = 0.25, ε = 0.01. The other parameter
values are the same as in Fig. 1.

Figure 3: The power-dropout/power-recovery large amplitude cycle (dark grey) in the plane (I, φ0) is
shown together with the bifurcation diagram of the cavity modes n = 1 and n = 2 in the interval
0 < φ0 < 4π. Green (red) lines correspond to the stable (unstable) steady state solutions. Blue
(magenta) lines correspond to the stable (unstable) periodic solutions. Circles and triangles mark an
Andronov-Hopf bifurcation point and a fold bifurcation, respectively. The figure shows that the power-
dropout/power-recovery cycle follows a stable branch of periodic solutions until it reaches a supercrit-
ical Andronov-Hopf bifurcation point H , than follows the stable steady state branch until it reaches a
fold bifurcation point LP . The black arrow indicates the direction of sweep. The values of the fixed
parameters are the same as in Fig. 2.
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3 Sweeping dynamics

Let us now explore the effect of a slowly varying φ(t) = ±εt, ε� 1 that corresponds to the frequency
sweep in opposite directions with a sweeping rate which is much slower than one wavelength per round
trip. Time trace in Fig. 2 results from direct numerical integration of Eqs. (3–4), and demonstrates
well known asymmetry of the dynamical response to the frequency sweep. The bifurcation diagram
of the steady and periodic solutions in Fig. 3 has been computed using a numerical continuation
technique [21] and displays the cavity mode branches for n = 1 and n = 2 in the range 0 < φ0 < 4π.
Because of the periodicity in φ0, the cavity mode branch for n = 2 is the same as the one for n = 1
but shifted by 2π along the φ0-axis. The low amplitude tail of the branch for n = 2 overlaps with the
large amplitude part of the branch for n = 1. This overlap is important for understanding of two types
of the bursting dynamics which appear with frequency sweeping in opposite directions. Each branch
contains two important bifurcations marked in Fig. 3 as H and LP , and a stable steady state laser
operation is only possible in the interval between these points. LP corresponds to a fold bifurcation
from a cavity mode that is responsible for the mode hopping sequence as we progressively increase
φ0. The mode hopping sequence forms large amplitude bursts which are similar to neuromorphic
design of square-wave bursting oscillations [22].

Formation of the large amplitude burst is detailed in Fig. 3 where the bifurcation diagram of the steady
state and periodic solutions is shown together with the long time solution of Eqs. (3-4) (in dark gray)
for the positive frequency sweep direction relative to the filter profile φ(t) = εt, ε = 0.01. The single
mode steady state changes stability at the point H with the increase of φ0, and the branch of stable
periodic solutions emerges from the supercritical Andronov-Hopf bifurcation point at the relaxation
oscillation frequency. LP marks a limit point of steady states at which the power dropout happens.
The laser follows the steady state branch n = 1 as φ0 increases until it passes LP , and then drops
down to sustained oscillations of the lower branch of periodic solutions at n = 2, and returns to the
steady state branch passing the Andronov-Hopf bifurcation H. As is visible in Fig. 3, the Andronov-
Hopf bifurcation transition to steady state can be delayed in the absence of noise [23].

Let us now follow a low amplitude bursting cycle which appears at the branch n = 2 after a super-
critical Andronov-Hopf bifurcation H for the negative sweep direction φ(t) = −εt, ε = 0.01. It is
shown in dark grey in Fig. 4. After the transition to the stable periodic oscillations the laser follows
the branch n = 2 of limit-cycle oscillations as φ0 decreases until it reaches LPLC . The laser then
jumps up to the upper branch n = 1, starting a new bursting cycle. The jump up may happen slightly
before LPLC . The folding point of the Andronov-Hopf bifurcation branch, which we denote by LPLC
in Fig. 4(b), is important for the formation of the low amplitude bursting. This point corresponds to a
saddle-node bifurcation of limit cycles below which neither stable nor unstable periodic oscillations are
possible. Different dynamics between H and LPLC can be seen in Fig. 5 which shows the extrema
of the oscillations as we progressively decrease φ0 from H . After a secondary Hopf bifurcation HLC ,
quasiperiodicity and a weak chaos, the laser jumps up to the higher branch. The response of the laser
to the slowly sweeping narrow band filtering thus takes the form of low amplitude bursts of spiking.

4 Conclusion

In this paper, we have considered a delay differential equation model for a laser with an intracavity
swept filter, and theoretically analyzed the bifurcation structure of a short cavity swept source. Unlike
the long cavity devices, the continuous wave solution of the model equations is strongly asymmetric
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Figure 4: Dynamical evolution of the intensity with sweeping frequency in the positive direction (dark
gray) in the plane (I, φ0) is shown together with the bifurcation diagram in linear (a) and logarith-
mic scales (b). The figure shows that the branch of periodic solutions (dark grey) is emerging from
supercritical Andronov-Hopf bifurcation point H , follows a stable branch of periodic solutions, under-
goes a secondary Hopf bifurcationHLC , and develops into chaos with various stability changes until it
reaches a limit-point of limit-cyclesLPLC from where it jumps back to the vicinity of the Andronov-Hopf
bifurcation. The black arrow indicates the direction of sweep. LP ∗ is the CW solution fold bifurcation
point at low intensity value. The coloring, the marks and the fixed parameters are the same as in Fig. 3.

with a foldover similar to nonlinear resonance curve with hysteresis [19, 20]. The foldover allows co-
existence of single mode branches what changes the character of the mode hopping compared to
long cavity devices. Additionally, the foldover defines two bursting phenomena which form sufficiently
different laser outputs depending on the sweep direction. Such a behavior is similar to that observed
in other swept sources; for this reason the increasing wavelength sweep will lead to more coherent
output but with mode hops, while the decreasing wavelength sweep will lead to a continuous sweep
with a lower coherence length as for other swept sources [16,18].
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Figure 5: Time-average extrema of I(t) obtained numerically for the negative direction of the fre-
quency sweep for low amplitude bursting. The black arrow indicates the direction of sweep. The fixed
parameters and the marks are the same as in Fig. 4.
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