83 research outputs found

    Bombardment of CO ice by cosmic rays: I. Experimental insights into the microphysics of molecule destruction and sputtering

    Get PDF
    We present a dedicated experimental study of microscopic mechanisms controlling radiolysis and sputtering of astrophysical ices due to their bombardment by cosmic ray ions. Such ions are slowed down due to inelastic collisions with bound electrons, resulting in ionization and excitation of ice molecules. In experiments on CO ice irradiation, we show that the relative contribution of these two mechanisms of energy loss to molecule destruction and sputtering can be probed by selecting ion energies near the peak of the electronic stopping power. We have observed a significant asymmetry, both in the destruction cross section and the sputtering yield, for pairs of ion energies corresponding to same values of the stopping power on either side of the peak. This implies that the stopping power does not solely control these processes, as usually assumed in the literature. Our results suggest that electronic excitations represent a significantly more efficient channel for radiolysis and, possibly, also for sputtering of CO ice. We also show that the charge state of incident ions as well as the rate for CO+^+ production in the ice have negligible effect on these processes.Comment: Accepted for publication in Ap

    Cohomological characterizations of projective spaces and hyperquadrics

    Full text link
    We confirm Beauville's conjecture that claims that if the p-th exterior power of the tangent bundle of a smooth projective variety contains the p-th power of an ample line bundle, then the variety is either the projective space or the p-dimensional quadric hypersurface.Comment: Added Lemma 2.8 and slightly changed proof of Lemma 6.2 to make them apply for torsion-free sheaves and not only to vector bundle
    corecore