132 research outputs found

    Inversion in the published genetic map of linkage group VII

    Get PDF
    In the course of cloning the dim-2 gene of Neurospora crassa we found that the published map of LG VII has an inversion of a segment extending from for to un-10K. Direct physical mapping confirmed that the gene order in this region should be wc-1, for, frq, oli, un-10

    The Adaptive Reuse of Warehouse and Factory Buildings into Residential Living Spaces in Wellington, New Zealand

    No full text
    Adaptive reuse does not only mean successfully putting new uses into an old shell. At best the impression is given that a building at the moment of its conversion has finally achieved its true destiny. Constructed during the industrial era, often utilitarian and non-descript in their design, warehouse and factory buildings were constructed to store and manufacture goods. Upon their obsolescence, due to containerisation, the closure of business, and subsequent dereliction through disrepair or disuse, these largely structurally sound buildings were left vacant until a cultural movement began in America, converting them into living and studio spaces. The adaptive reuse of these buildings resulted in a new programme, which was to provide residence and ‘store’ people. Much later, in the 1990s this movement spread to Wellington, New Zealand. This delay raises the issue of what makes a successful conversion of a warehouse or factory building to loft-style living space, and through which architectural approaches, criteria and methods may we examine these buildings? This thesis first examines pioneering examples of loft and warehouse living in SoHo, New York, from the initial subversive beginnings of the movement, when artists illegally occupied these spaces. It looks at the gentrification of neighbourhoods and how the loft eventually emerged as a highly sought after architectural living space, first in SoHo, New York before spreading globally to Wellington, New Zealand. Four Wellington warehouse and factory buildings that were converted into residential living spaces are examined and compared. The aim is to understand the conversion process and necessary strategies required to instil a new architectural programme within an existing warehouse or factory building, recognising the unique conditions in such converted architectural spaces. A reused, converted warehouse or former factory can acquire characteristics unique to that building: a certain patina of age, a residue of industrial history, imbedded qualities of surface, a unique architectural structure, as well as the location of the building itself. The case studies show how these imbedded characteristics, can be preserved when the building is converted, thereby retaining the building’s former history while providing a new function. This thesis then analyses whether any commonalities and differences in warehouse and factory living existed between Wellington and SoHo New York, in terms of the evolution of the cultural movement and architectural design. The thesis shows that successful approaches to conversion of factories or warehouses can both save the buildings from demolition, preserve and highlight their heritage and create an architecturally unique space, with inherent qualities that cannot be recreated in a new building. Thus, only upon conversion, can the building gain a sense that it has achieved its true destiny

    Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair

    Get PDF
    Microcephaly with early-onset, intractable seizures and developmental delay (MCSZ) is a hereditary disease caused by mutations in polynucleotide kinase/phosphatase (PNKP), a DNA strand break repair protein with DNA 5'-kinase and DNA 3'-phosphatase activity. To investigate the molecular basis of this disease, we examined the impact of MCSZ mutations on PNKP activity in vitro and in cells. Three of the four mutations currently associated with MCSZ greatly reduce or ablate DNA kinase activity of recombinant PNKP at 30°C (L176F, T424Gfs48X and exon15Δfs4X), but only one of these mutations reduces DNA phosphatase activity under the same conditions (L176F). The fourth mutation (E326K) has little impact on either DNA kinase or DNA phosphatase activity at 30°C, but is less stable than the wild-type enzyme at physiological temperature. Critically, all of the MCSZ mutations identified to date result in ∼10-fold reduced cellular levels of PNKP protein, and reduced rates of chromosomal DNA strand break repair. Together, these data suggest that all four known MCSZ mutations reduce the cellular stability and level of PNKP protein, with three mutations likely ablating cellular DNA 5'-kinase activity and all of the mutations greatly reducing cellular DNA 3'-phosphatase activity

    Homologous Recombination Is Stimulated by a Decrease in dUTPase in Arabidopsis

    Get PDF
    Deoxyuridine triphosphatase (dUTPase) enzyme is an essential enzyme that protects DNA against uracil incorporation. No organism can tolerate the absence of this activity. In this article, we show that dUTPase function is conserved between E. coli (Escherichia coli), yeast (Saccharomyces cerevisiae) and Arabidopsis (Arabidopsis thaliana) and that it is essential in Arabidopsis as in both micro-organisms. Using a RNA interference strategy, plant lines were generated with a diminished dUTPase activity as compared to the wild-type. These plants are sensitive to 5-fluoro-uracil. As an indication of DNA damage, inactivation of dUTPase results in the induction of AtRAD51 and AtPARP2, which are involved in DNA repair. Nevertheless, RNAi/DUT1 constructs are compatible with a rad51 mutation. Using a TUNEL assay, DNA damage was observed in the RNAi/DUT1 plants. Finally, plants carrying a homologous recombination (HR) exclusive substrate transformed with the RNAi/DUT1 construct exhibit a seven times increase in homologous recombination events. Increased HR was only detected in the plants that were the most sensitive to 5-fluoro-uracils, thus establishing a link between uracil incorporation in the genomic DNA and HR. Our results show for the first time that genetic instability provoked by the presence of uracils in the DNA is poorly tolerated and that this base misincorporation globally stimulates HR in plants

    An Assessment of the Role of DNA Adenine Methyltransferase on Gene Expression Regulation in E coli

    Get PDF
    N6-Adenine methylation is an important epigenetic signal, which regulates various processes, such as DNA replication and repair and transcription. In γ-proteobacteria, Dam is a stand-alone enzyme that methylates GATC sites, which are non-randomly distributed in the genome. Some of these overlap with transcription factor binding sites. This work describes a global computational analysis of a published Dam knockout microarray alongside other publicly available data to throw insights into the extent to which Dam regulates transcription by interfering with protein binding. The results indicate that DNA methylation by DAM may not globally affect gene transcription by physically blocking access of transcription factors to binding sites. Down-regulation of Dam during stationary phase correlates with the activity of TFs whose binding sites are enriched for GATC sites

    The Base Excision Repair System of Salmonella enterica serovar Typhimurium Counteracts DNA Damage by Host Nitric Oxide

    Get PDF
    Intracellular pathogens must withstand nitric oxide (NO·) generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS) and possesses multiple systems to detoxify NO·. Consequently, the level of NO· stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER) system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP) sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO· sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO· fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO·–dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO·. These observations demonstrate that host-derived NO· damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity

    Replication Fork Reversal after Replication–Transcription Collision

    Get PDF
    Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication–transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replication–transcription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle

    DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC

    Get PDF
    Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora

    Removal of Misincorporated Ribonucleotides from Prokaryotic Genomes: An Unexpected Role for Nucleotide Excision Repair

    Get PDF
    Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th-5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER
    • …
    corecore