185 research outputs found

    Patches in a side-by-side configuration: a description of the flow and deposition fields

    Get PDF
    In the last few decades, a lot of research attention has been paid to flow-vegetation interactions. Starting with the description of the flow field around uniform macrophyte stands, research has evolved more recently to the description of flow fields around individual, distinct patches. However, in the field, vegetation patches almost never occur in isolation. As such, patches will influence each other during their development and interacting, complex flow fields can be expected. In this study, two emergent patches of the same diameter (D = 22 cm) and a solid volume fraction of 10% were placed in a side-by-side configuration in a lab flume. The patches were built as an array of wooden cylinders, and the distance between the patches (gap width Delta) was varied between Delta = 0 and 14 cm. Flow measurements were performed by a 3D Vectrino Velocimeter (Nortek AS) at mid-depth of the flow. Deposition experiments of suspended solids were performed for selected gap widths. Directly behind each patch, the wake evolved in a manner identical to that of a single, isolated patch. On the centerline between the patches, the maximum velocity U-max was found to be independent of the gap width Delta. However, the length over which this maximum velocity persists, the potential core L-j, increased linearly as the gap width increased. After the merging of the wakes, the centerline velocity reaches a minimum value U-min. The minimum centerline velocity decreased in magnitude as the gap width decreased. The velocity pattern within the wake is reflected in the deposition patterns. An erosion zone occurs on the centerline between the patches, where the velocity is elevated. Deposition occurs in the low velocity zones directly behind each patch and also downstream of the patches, along the centerline between the patches at the point of local velocity minimum. This downstream deposition zone, a result of the interaction of neighbouring patch wakes, may facilitate the establishment of new vegetation, which may eventually inhibit flow between the upstream patches and facilitate patch merger

    Discharge and force distribution in a sinuous channel with vegetated floodplains during overbank flow

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Hydraulic Research on 2019, available online at: http://www.tandfonline.com/10.1080/00221686.2019.1581667Overbank flow in a sinuous channel with roughened floodplains has been investigated, focusing on the effect of floodplain vegetation on overall flow resistance. The physical model of the Besòs River has allowed analysing the effect of flexible roughness elements which simulate the natural vegetation of rivers. The experimental measurements of horizontal velocities have been used to obtain zonal discharges and forces along a meander wavelength. The results illustrate that although mass transfer is the most important source of energy losses, in rivers with strongly vegetated floodplains the flow resistance increases considerably due to the strong apparent shear forces acting between the main channel and floodplains.Peer ReviewedPostprint (author's final draft

    Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics

    Get PDF
    Vegetation was added to a fully developed sandy point bar in the meander of a constructed stream. Significant changes in the flow structure and bed topography were observed. As expected, the addition of vegetative resistance decreased the depth-averaged streamwise velocity over the bar and increased it in the open region. In addition, the secondary circulation increased in strength but became confined to the deepest section of the channel. Over the point bar, the secondary flow was entirely outward, i.e., toward the outer bank. The changes in flow led to changes in bar shape. Although the region of the bar closest to the inner bank accumulated sediment, erosion of the bar and the removal of plants by scouring were observed at the interface between the planted bar and the open channel.National Science Foundation (U.S.) (Grant No. EAR 0738352

    Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada-US border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada?U.S. border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Bright single-photon sources in bottom-up tailored nanowires

    Get PDF
    The ability to achieve near-unity light extraction efficiency is necessary for a truly deterministic single photon source. The most promising method to reach such high efficiencies is based on embedding single photon emitters in tapered photonic waveguides defined by top-down etching techniques. However, light extraction efficiencies in current top-down approaches are limited by fabrication imperfections and etching induced defects. The efficiency is further tempered by randomly positioned off-axis quantum emitters. Here, we present perfectly positioned single quantum dots on the axis of a tailored nanowire waveguide using bottom-up growth. In comparison to quantum dots in nanowires without waveguide, we demonstrate a 24-fold enhancement in the single photon flux, corresponding to a light extraction efficiency of 42 %. Such high efficiencies in one-dimensional nanowires are promising to transfer quantum information over large distances between remote stationary qubits using flying qubits within the same nanowire p-n junction.Comment: 19 pages, 6 figure

    Grand Challenges of Evolutionary Psychology

    Get PDF
    In this paper we present our recent developments in control and manipulation of individual spins and photons in a single nanowire quantum dot. Specific examples include demonstration of optical excitation of single spin states, charge tunable quantum devices and single photon sources. We will also discuss our recent discovery of a new type of charge confinement - crystal phase quantum dots. They are formed from the same material with different crystal structure, and today can only be realized in nanowires

    Advanced adenoma diagnosis with FDG PET in a visibly normal mucosa: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An accurate, early diagnosis and treatment of adenomatous polyp can curtail progression to colorectal cancer. F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) reveals the biochemical changes associated with the development of many cancers which precede the appearance of gross anatomical changes that may be visualized during surgical resection or via imaging with MR or CT.</p> <p>Intervention</p> <p>We detail the history of a 64 year old female who had a whole-body FDG PET scan as a part of an employee wellness program. A dose of 12.2 mCi of F-18 labeled FDG was administered.</p> <p>Results</p> <p>A focal cecal uptake with a standardized uptake value (SUV) of 8.9 was found on the PET scan. Conversely, only normal mucosa was observed during a colonoscopy done 2 months after the PET scan. Motivated by the PET scan finding, the colonoscopist performed a biopsy which revealed a villous adenoma without high grade dysplasia. Pathology from tissue extracted during an exploratory laparatomy completed one month later found the lesion to be a villous adenoma with high grade dysplasia.</p> <p>Conclusion</p> <p>Whole-body FDG PET scan revealed the biochemical metabolic changes in malignancy that preceded the appearance of any gross anatomical abnormality. A positive FDG PET scan indicative of colorectal cancer should be followed up with a colonoscopy and biopsy even in a visibly normal mucosa.</p
    corecore