158 research outputs found

    Solar wind ion charge state distributions and compound cross sections for solar wind charge exchange X-ray emission

    Get PDF
    Solar Wind Charge eXchange X-ray (SWCX) emission in the heliosphere and Earth's exosphere is a hard to avoid signal in soft X-ray observations of astrophysical targets. On the other hand, the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial interactions and magnetospheric interfaces. In both cases, accurate modelling of the SWCX emission is key to correctly interpret its signal, and remove it from observations, when needed. In this paper, we compile solar wind abundance measurements from ACE for different solar wind types, and atomic data from literature, including charge exchange cross-sections and emission probabilities, used for calculating the compound cross-section \begin{document}α \alpha \end{document} for the SWCX X-ray emission. We calculate \begin{document}α \alpha \end{document} values for charge-exchange with H and He, relevant to soft X-ray energy bands (0.1−2.0 keV) for various solar wind types and solar cycle conditions

    The Solar Wind Charge-eXchange contribution to the Local Soft X-ray Background. Model to data comparison in the 0.1-1.0 keV band

    Get PDF
    The major sources of the Soft X-ray Background (SXRB), besides distinct structures as supernovae and superbubbles (e.g. Loop I), are: (i) an absorbed extragalactic emission following a power law, (ii) an absorbed thermal component ~2x10^6 K) from the galactic disk and halo, (iii) an unabsorbed thermal component, supposedly at 10^6 K, attributed to the Local Bubble and (iv) the very recently identified unabsorbed Solar Wind Charge-eXchange (SWCX) emission from the heliosphere and the geocorona. We study the SWCX heliospheric component and its contribution to observed data. In a first part, we apply a SWCX heliospheric simulation to model the oxygen lines (3/4 keV) local intensities during shadowing observations of the MBM12 molecular cloud and a dense filament in the south galactic hemisphere with Chandra, XMM-Newton, and Suzaku telescopes. In a second part, we present a preliminary comparison of SWCX model results with ROSAT and Wisconsin surveys data in the 1/4 keV band. We conclude that, in the 3/4 keV band, the total local intensity is entirely heliospheric, while in the 1/4 keV band, the heliospheric component seems to contribute significantly to the local SXRB intensity and has potentially a strong influence on the interpretation of the ROSAT and Wisconsin surveys data in terms of Local Bubble hot gas temperature.Comment: 15 pages, 7 figures, 2 tables, 'From the Outer Heliosphere to the Local Bubble' ISSI workshop, Bern October 200

    Solar wind charge exchange X-ray emission from Mars Model and data comparison

    Full text link
    Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray images are a powerful tool for the study of solar wind - planetary interfaces. However, the simulation results reveal several quantitative discrepancies compared to the observations. Typical solar wind and neutral coronae conditions corresponding to the 2003 observation period of Mars cannot reproduce the high luminosity or the corresponding very extended halo observed with XMM-Newton. Potential explanations of these discrepancies are discussed.Comment: 10 pages, 5 figures, accepted for publication in Astron. Astrophysic

    Interplanetary Lyman α\alpha line profiles: variations with solar activity cycle

    Full text link
    Interplanetary Lyman alpha line profiles are derived from the SWAN H cell data measurements. The measurements cover a 6-year period from solar minimum (1996) to after the solar maximum of 2001. This allows us to study the variations of the line profiles with solar activity. These line profiles were used to derive line shifts and line widths in the interplanetary medium for various angles of the LOS with the interstellar flow direction. The SWAN data results were then compared to an interplanetary background upwind spectrum obtained by STIS/HST in March 2001. We find that the LOS upwind velocity associated with the mean line shift of the IP \lya line varies from 25.7 km/s to 21.4 km/s from solar minimum to solar maximum. Most of this change is linked with variations in the radiation pressure. LOS kinetic temperatures derived from IP line widths do not vary monotonically with the upwind angle of the LOS. This is not compatible with calculations of IP line profiles based on hot model distributions of interplanetary hydrogen. We also find that the line profiles get narrower during solar maximum. The results obtained on the line widths (LOS temperature) show that the IP line is composed of two components scattered by two hydrogen populations with different bulk velocities and temperature. This is a clear signature of the heliospheric interface on the line profiles seen at 1 AU from the sun.Comment: 9 pages, 9 figure

    The Solar-Cycle Temporal Variation of the Solar Wind Charge Exchange X-ray Lines

    Full text link
    Solar wind charge exchange (SWCX) is the primary contamination to soft X-ray emission lines from the Milky Way (MW) hot gas. We report a solar-cycle (10\approx 10 yr) temporal variation of observed \ion{O}{7} and \ion{O}{8} emission line measurements in the {\it XMM-Newton} archive, which is tightly correlated with the solar cycle traced by the sunspot number (SSN). This temporal variation is expected to be associated with the heliospheric SWCX. Another observed correlation is that higher solar wind (SW) fluxes lead to higher O VII or O VIII fluxes, which is due to the magnetospheric SWCX. We construct an empirical model to reproduce the observed correlation between the line measurements and the solar activity (i.e., the SW flux and the SSN). With this model we discovered a lag of 0.910.22+0.200.91_{-0.22}^{+0.20} yr between the O VII flux and the SSN. This time lag is a combination of the SW transit time within the heliosphere, the lag of the neutral gas distribution responding to solar activity, and the intrinsic lag between the SSN and the launch of a high-energy SW (i.e., O7+\rm O^{7+} and O8+\rm O^{8+}). MW O VII and O VIII fluxes have mean values of 5.4 L.U. and 1.7 L.U., which are reduced by 50%50\% and 30%30\%, compared to studies where the SWCX contamination is not removed. This correction also changes the determination of the density distribution and the temperature profile of the MW hot gas.Comment: 10 pages, 5 figures. ApJ accepte

    XMM-Newton Observations of MBM 12: More Constraints on the Solar Wind Charge Exchange and Local Bubble Emissions

    Get PDF
    We present the first analysis of an XMM-Newton observation of the nearby molecular cloud MBM 12. We find that in the direction of MBM 12 the total O VII (0.57 keV) triplet emission is 1.8(+0.5/-0.6) photons/sq cm/s/sr (or Line Units - LU) while for the O VIII (0.65 keV) line emission we find a 3(sigma) upper limit of <1 LU. We also use a heliospheric model to calculate the O VII and O VIII emission generated by Solar Wind Charge-eXchange (SWCX) which we compare to the XMM-Newton observations. This comparison provides new constraints on the relative heliospheric and Local Bubble contributions to the local diffuse X-ray background. The heliospheric SWCX model predicts 0.82 LU for O VII, which accounts for approx. 46+/-15% of the observed value, and 0.33 LU for the O VIII line emission consistent with the XMM-Newton observed value. We discuss our results in combination with previous observations of the MBM 12 with CHANDRA and Suzaku

    Invited Article: First Flight in Space of a Wide-Field-of-View Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    Get PDF
    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars

    LEM All-Sky Survey: Soft X-ray Sky at Microcalorimeter Resolution

    Full text link
    The Line Emission Mapper (LEM) is an X-ray Probe with with spectral resolution ~2 eV FWHM from 0.2 to 2.5 keV and effective area >2,500 cm2^2 at 1 keV, covering a 33 arcmin diameter Field of View with 15 arcsec angular resolution, capable of performing efficient scanning observations of very large sky areas and enabling the first high spectral resolution survey of the full sky. The LEM-All-Sky Survey (LASS) is expected to follow the success of previous all sky surveys such as ROSAT and eROSITA, adding a third dimension provided by the high resolution microcalorimeter spectrometer, with each 15 arcsec pixel of the survey including a full 1-2 eV resolution energy spectrum that can be integrated over any area of the sky to provide statistical accuracy. Like its predecessors, LASS will provide both a long-lasting legacy and open the door to the unknown, enabling new discoveries and delivering the baseline for unique GO studies. No other current or planned mission has the combination of microcalorimeter energy resolution and large grasp to cover the whole sky while maintaining good angular resolution and imaging capabilities. LASS will be able to probe the physical conditions of the hot phases of the Milky Way at multiple scales, from emission in the Solar system due to Solar Wind Charge eXchange, to the interstellar and circumgalactic media, including the North Polar Spur and the Fermi/eROSITA bubbles. It will measure velocities of gas in the inner part of the Galaxy and extract the emissivity of the Local Hot Bubble. By maintaining the original angular resolution, LASS will also be able to study classes of point sources through stacking. For classes with ~10410^4 objects, it will provide the equivalent of 1 Ms of high spectral resolution data. We describe the technical specifications of LASS and highlight the main scientific objectives that will be addressed. (Abridged)Comment: White Paper in support of a mission concept to be submitted for the 2023 NASA Astrophysics Probes opportunity. This White Paper will be updated when required. 30 pages, 25 figure
    corecore