11 research outputs found

    Infinite-Horizon Differentiable Model Predictive Control

    Full text link
    This paper proposes a differentiable linear quadratic Model Predictive Control (MPC) framework for safe imitation learning. The infinite-horizon cost is enforced using a terminal cost function obtained from the discrete-time algebraic Riccati equation (DARE), so that the learned controller can be proven to be stabilizing in closed-loop. A central contribution is the derivation of the analytical derivative of the solution of the DARE, thereby allowing the use of differentiation-based learning methods. A further contribution is the structure of the MPC optimization problem: an augmented Lagrangian method ensures that the MPC optimization is feasible throughout training whilst enforcing hard constraints on state and input, and a pre-stabilizing controller ensures that the MPC solution and derivatives are accurate at each iteration. The learning capabilities of the framework are demonstrated in a set of numerical studies

    Unconventional computing using evolution-in-nanomaterio: neural networks meet nanoparticle networks

    Get PDF
    Recently published experimental work on evolution-in-materio applied to nanoscale materials shows promising results for future reconfigurable devices. These experiments were performed on disordered nano-particle networks that have no predefined design. The material has been treated as a blackbox, and genetic algorithms have been used to find appropriate configuration voltages to enable the target functionality. In order to support future experiments, we developed simulation tools for predicting candidate functionalities. One of these tools is based on a physical model, but the one we introduce in this paper is based on an artificial neural network. The advantage of this newly presented approach is that, after training the neural network to match either the real material or its physical model, it can be configured using gradient descent instead of a black-box optimisation. The experiments we report here demonstrate that the neural network can model the simulated nano-material quite accurately. The differentiable, neural network-based material model is then used to find logic gates, as a proof of principle. This shows that the new approach has great potential for partly replacing costly and time-consuming experiments with the real materials. Therefore, this approach has a high relevance for future computing, either as an alternative to digital computing or as an alternative way of producing multi-functional reconfigurable devices

    Recurrent Highway Networks

    No full text
    Many sequential processing tasks require complex nonlinear transition functions from one step to the next. However, recurrent neural networks with “deep” transition functions remain difficult to train, even when using Long Short-Term Memory (LSTM) networks. We introduce a novel theoretical analysis of recurrent networks based on Gersgorin’s circle theorem that illuminates several modeling and optimization issues and improves our understanding of the LSTM cell. Based on this analysis we propose Recurrent Highway Networks, which extend the LSTM architecture to allow step-to-step transition depths larger than one. Several language modeling experiments demonstrate that the proposed architecture results in powerful and efficient models. On the Penn Treebank corpus, solely increasing the transition depth from 1 to 10 improves word-level perplexity from 90.6 to 65.4 using the same number of parameters. On the larger Wikipedia datasets for character prediction (text8 and enwik8), RHNs outperform all previous results and achieve an entropy of 1.27 bits per character.ISSN:2640-349

    Super Mario Evolution

    No full text
    Abstract — We introduce a new reinforcement learning benchmar

    Using neural networks to predict the functionality of reconfigurable nano-material networks

    Get PDF
    This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices, without a predefined design. The nano-material has been treated as a black-box, and the principle of evolution-in-materio, involving genetic algorithms, has been used to find appropriate configuration voltages to enable the target functionality. In order to support future experiments and the development of useful devices based on disordered nano-materials, we developed simulation tools for predicting candidate functionalities. One of these tools is based on a physical model, but the one described and analysed in this paper is based on an artificial neural network model. The advantage of this newly presented approach is that, after training the neural network to match either the real material or its physical model, it can be configured using gradient descent instead of a black-box optimisation, speeding up the search for functionality. The neural networks do not simulate the physical properties, but rather approximate the nano material’s transfer functions. The functions found using this new technique were verified back on the nano material’s physical model and on a real material network. It can be concluded from the reported experiments with these neural network models that they model the simulated nano-material quite accurately. The differentiable, neural network-based material model is used to find logic gates, as a proof of principle. This shows that the new approach has great potential for partly replacing costly and time consuming experiments with the real nano-material. Therefore, this approach has a high relevance for future computing, either as an alternative to digital computing or as an alternative way of producing multifunctional reconfigurable devices
    corecore