7 research outputs found

    Identification of a novel sugar 5,7-diacetamido-8-amino- 3,5,7,8,9-pentadeoxy-D-glycero-D-galacto-non-2-ulosonic acid present in the lipooligosaccharide of Vibrio parahaemolyticus O3:K6

    No full text
    A novel sugar, 5,7-diacetamido-8-amino- 3,5,7,8,9-pentadeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), has been identified as a component of the oligosaccharide (OS) isolated from the lipooligosaccharide (LOS) of the emerging strain of Vibrio parahaemolyticus O3:K6 associated with a global pandemic. In the present study we report the identification and characterization of this novel sugar present in the OS of V. parahaemolyticus O3:K6, using chemical analysis, NMR spectroscopy and mass spectrometry

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    Get PDF
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    No full text
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    No full text
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    Get PDF
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    No full text
    corecore