6 research outputs found

    Testing general relativity and probing the merger history of massive black holes with LISA

    Full text link
    Observations of binary inspirals with LISA will allow us to place bounds on alternative theories of gravity and to study the merger history of massive black holes (MBH). These possibilities rely on LISA's parameter estimation accuracy. We update previous studies of parameter estimation including non-precessional spin effects. We work both in Einstein's theory and in alternative theories of gravity of the scalar-tensor and massive-graviton types. Inclusion of non-precessional spin terms in MBH binaries has little effect on the angular resolution or on distance determination accuracy, but it degrades the estimation of the chirp mass and reduced mass by between one and two orders of magnitude. The bound on the coupling parameter of scalar-tensor gravity is significantly reduced by the presence of spin couplings, while the reduction in the graviton-mass bound is milder. LISA will measure the luminosity distance of MBHs to better than ~10% out to z~4 for a (10^6+10^6) Msun binary, and out to z~2 for a (10^7+10^7) Msun binary. The chirp mass of a MBH binary can always be determined with excellent accuracy. Ignoring spin effects, the reduced mass can be measured within ~1% out to z=10 and beyond for a (10^6+10^6) Msun binary, but only out to z~2 for a (10^7+10^7) Msun binary. Present-day MBH coalescence rate calculations indicate that most detectable events should originate at z~2-6: at these redshifts LISA can be used to measure the two black hole masses and their luminosity distance with sufficient accuracy to probe the merger history of MBHs. If the low-frequency LISA noise can only be trusted down to 10^-4 Hz, parameter estimation for MBHs (and LISA's ability to perform reliable cosmological observations) will be significantly degraded.Comment: 13 pages, 4 figures. Proceedings of GWDAW 9. Matches version accepted in Classical and Quantum Gravit

    Dark Matter Annihilation around Intermediate Mass Black Holes: an update

    Full text link
    The formation and evolution of Black Holes inevitably affects the distribution of dark and baryonic matter in the neighborhood of the Black Hole. These effects may be particularly relevant around Supermassive and Intermediate Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite being larger and more dense, spikes evolve at the very centers of galactic halos, in regions where numerous dynamical effects tend to destroy them. Mini-spikes may be more likely to survive, and they have been proposed as worthwhile targets for indirect Dark Matter searches. We review here the formation scenarios and the prospects for detection of mini-spikes, and we present new estimates for the abundances of mini-spikes to illustrate the sensitivity of such predictions to cosmological parameters and uncertainties regarding the astrophysics of Black Hole formation at high redshift. We also connect the IMBHs scenario to the recent measurements of cosmic-ray electron and positron spectra by the PAMELA, ATIC, H.E.S.S., and Fermi collaborations.Comment: 12 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics

    Strong gravitational lensing probes of the particle nature of dark matter

    Full text link
    There is a vast menagerie of plausible candidates for the constituents of dark matter, both within and beyond extensions of the Standard Model of particle physics. Each of these candidates may have scattering (and other) cross section properties that are consistent with the dark matter abundance, BBN, and the most scales in the matter power spectrum; but which may have vastly different behavior at sub-galactic "cutoff" scales, below which dark matter density fluctuations are smoothed out. The only way to quantitatively measure the power spectrum behavior at sub-galactic scales at distances beyond the local universe, and indeed over cosmic time, is through probes available in multiply imaged strong gravitational lenses. Gravitational potential perturbations by dark matter substructure encode information in the observed relative magnifications, positions, and time delays in a strong lens. Each of these is sensitive to a different moment of the substructure mass function and to different effective mass ranges of the substructure. The time delay perturbations, in particular, are proving to be largely immune to the degeneracies and systematic uncertainties that have impacted exploitation of strong lenses for such studies. There is great potential for a coordinated theoretical and observational effort to enable a sophisticated exploitation of strong gravitational lenses as direct probes of dark matter properties. This opportunity motivates this white paper, and drives the need for: a) strong support of the theoretical work necessary to understand all astrophysical consequences for different dark matter candidates; and b) tailored observational campaigns, and even a fully dedicated mission, to obtain the requisite data.Comment: Science white paper submitted to the Astro2010 Decadal Cosmology & Fundamental Physics Science Frontier Pane

    Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope

    No full text
    94 pages, 22 figures, 1 tableAstrophysical and cosmological observations currently provide the only robust, empirical measurements of dark matter. Future observations with Large Synoptic Survey Telescope (LSST) will provide necessary guidance for the experimental dark matter program. This white paper represents a community effort to summarize the science case for studying the fundamental physics of dark matter with LSST. We discuss how LSST will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational couplings to the Standard Model, and compact object abundances. Additionally, we discuss the ways that LSST will complement other experiments to strengthen our understanding of the fundamental characteristics of dark matter. More information on the LSST dark matter effort can be found at https://lsstdarkmatter.github.io/
    corecore