11 research outputs found

    Are Females More Responsive to Emotional Stimuli? A Neurophysiological Study Across Arousal and Valence Dimensions

    Get PDF
    Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional pictures selected from the International Affective Picture System (IAPS). The arousal and valence dimension of the stimuli were manipulated orthogonally. The peak amplitude and peak latency of ERP components and SCR were analyzed separately, and the scalp topographies of significant ERP differences were documented. Females responded with enhanced negative components (N100 and N200), in comparison to males, especially to the unpleasant visual stimuli, whereas both genders responded faster to high arousing or unpleasant stimuli. Scalp topographies revealed more pronounced gender differences on central and left hemisphere areas. Our results suggest a difference in the way emotional stimuli are processed by genders: unpleasant and high arousing stimuli evoke greater ERP amplitudes in women relatively to men. It also seems that unpleasant or high arousing stimuli are temporally prioritized during visual processing by both genders

    Systemic redox biomarkers suggest non-redox mediated processes in the prevention of bed rest-induced muscle atrophy after exercise training: The Cologne RSL study

    No full text
    It has been previously reported that eccentric-biased exercise training prevents the decreases in lean body mass after 60 days of head tilt down bed rest (“Cologne RSL Study”). The aim of the present study, as a part of Cologne RSL Study, was to investigate whether these anti-atrophy effects of exercise training are regulated by redox processes, as assessed indirectly via redox biomarkers in blood and urine. Twenty-four volunteers (N = 24) participated in a randomized controlled study and were randomly divided into two groups: a jump training group (JUMP, n = 12) that performed a specific eccentric-biased training protocol on a Sledge Jump System and a control group (CON, n = 11; one drop-out) that did not perform any exercise. All participants maintained a 6° head tilt down position for 24 h/day for 60 days. Redox measurements in plasma, erythrocytes and urine were performed at several time points throughout the study (i.e., baseline, intervention and recovery phases). A main effect of time was found for all dependent variables (P < .05). In particular, plasma protein carbonyls, erythrocyte catalase activity and urine F2-isoprostanes increased, while erythrocyte glutathione concentration decreased over time in both groups. In contrast, neither a main effect of group nor a significant group × time interaction was found in any of the measured variables (P > .05). In conclusion, our findings in systemic redox biomarkers indicate that the anti-atrophy effects of exercise training during a 60-day bed rest protocol are not regulated by redox processes. © 2019 IA

    Neuroscientific tools in the cockpit: towards a meaningful decision support system for fatigue risk management

    Get PDF
    Fatigued pilots are prone to experience cognitive disorders that degrade their performance and adherence to high safety standards. In light of the current challenging context in aviation, we report the early phase of our ongoing project on the re-evaluation of human factors research for flight crew. Our motivation stems from the need for aviation organisations to develop decision support systems for operational aviation settings, able to feed-in in the organisations’ fatigue risk management efforts. Key criteria to this end are the need for the least possible intrusiveness and the added information value for a safety system. Departing from the problems in compliance-focused fatigue risk management and the intrusive nature of clinical studies, we report a neuroscientific methodology able to yield markers that can be easily integrated in a decision support system at the operational level. Reporting the preliminary phase of our live project, we evaluate the tools suitable for the development of a system that tracks subtle pilot states, such as drowsiness and micro-sleep episodes
    corecore