98 research outputs found

    Coverage of renewable powered cellular networks

    Get PDF
    Session: SS4 Energy‐Aware Communications: no. 1570002605Powering a radio access network using renewables such as wind and solar power promises dramatic reduction of the network operation cost and of the networks' carbon footprints. However, the spatial variation of the energy field can lead to fluctuation in power supplied to the network and thereby affects its coverage. To quantify the effect, the paper considers a cellular downlink network with hexagonal cells and powered by harvesting energy. The network coverage of mobiles is specified by an outage constraint. A novel model of the energy field is developed using stochastic geometry. In the model, fixed maximum energy intensity occurs at Poisson distributed locations, called energy centers; the intensities fall off from the centers following an exponential-decay function of squared distance; the energy intensity at an arbitrary location is given by the decayed intensity from the nearest energy center. First, consider single harvesters deployed on the same sites as base stations (BSs). The mobile outage probability is shown to decrease exponentially with the product of the energy-field parameters: the energy-center density and exponential rate of the energy-decay function. Next, consider distributed harvesters whose generated energy is aggregated and then re-distributed to BSs. As the number of harvesters per aggregator increases, the power supplied to each BS is shown to converge to a constant proportional to the number of harvesters per BS, which counteracts the randomness of the energy field. © 2014 IEEE.published_or_final_versio

    Renewables powered cellular networks: Energy field modeling and network coverage

    Get PDF
    Powering radio access networks using renewables, such as wind and solar power, promises dramatic reduction in the network operation cost and the network carbon footprints. However, the spatial variation of the energy field can lead to fluctuations in power supplied to the network and thereby affects its coverage. This warrants research on quantifying the aforementioned negative effect and designing countermeasure techniques, motivating the current work. First, a novel energy field model is presented, in which fixed maximum energy intensity γ occurs at Poisson distributed locations, called energy centers. The intensities fall off from the centers following an exponential decay function of squared distance and the energy intensity at an arbitrary location is given by the decayed intensity from the nearest energy center. The product between the energy center density and the exponential rate of the decay function, denoted as ψ, is shown to determine the energy field distribution. Next, the paper considers a cellular downlink network powered by harvesting energy from the energy field and analyzes its network coverage. For the case of harvesters deployed at the same sites as base stations (BSs), as γ increases, the mobile outage probability is shown to scale as (cγ-πψ+p), where p is the outage probability corresponding to a flat energy field and cc is a constant. Subsequently, a simple scheme is proposed for counteracting the energy randomness by spatial averaging. Specifically, distributed harvesters are deployed in clusters and the generated energy from the same cluster is aggregated and then redistributed to BSs. As the cluster size increases, the power supplied to each BS is shown to converge to a constant proportional to the number of harvesters per BS. Several additional issues are investigated in this paper, including regulation of the power transmission loss in energy aggregation and extensions of the energy field model. © 2002-2012 IEEE.published_or_final_versio

    Some Reflections on the 'Personal Scope' of Collective Labour Law

    Get PDF
    The purpose of this article is to focus on a very topical aspect of labour/employment law, namely that of its personal or relational scope, which is usually regarded as an individual one, but which we argue has a significant and largely neglected collective dimension. A first introductory section proposes a normative framework for this inquiry, arguing for a more inclusive approach to relational scope where collective labour rights are engaged and finding a basis for this approach in ILO Recommendation No 198. A second section demonstrates the way in which the relevant jurisprudence of UK labour/employment law has seemed to be out of accord with that normative approach. A third section demonstrates how the case law of the ECJ and CJEU has also in its own way been unsympathetic to claims that self-employed workers should be brought within the fold of collective labour law, particularly with regard to collective bargaining. A fourth section further develops a supranational perspective upon these arguments, concentrating on arguments and pronouncements emanating from the European Committee for Social Rights. A fifth section considers ways in which novel scenarios of differentiation between ‘labour’ and ‘capital’ are presenting themselves in the context of the so-called ‘gig economy’, focusing on the very recent UK Employment Tribunal decision in the Uber case. A sixth concluding section expresses the hope that the article has opened up a largely untrodden path towards an authentically collective view of the debate about the personal scope of labour/employment law

    Assessing public preferences for a wildfire mitigation policy in Crete, Greece

    Get PDF
    The increased frequency and severity of wildfires in the Mediterranean region generates significant damages in ecosystems and landscapes while harming human populations. Institutional complexities, along with socioeconomic and demographic changes encouraging development into the wildland-urban interface, rural abandonment, and focus on fire suppression, are increasing the vulnerability and flammability of Mediterranean ecosystems. Developing effective strategies for managing wildfire incidence and its aftermath requires understanding of the public preferences for wildfire policy characteristics. Here we elicit public preferences for wildfire mitigation policies employing a stated choice experiment applied in Crete, Greece. A region with typical Mediterranean landscape experiencing significant development and rural-to-urban migration that disrupts existing fire regimes. We estimate conditional logit, mixed logit and latent class models to study the general public's preferences and willingness to pay for limiting wildfire frequency and agricultural land burnt, maintaining landscape features, and managing post-wildfire recovery. Results of our study show that measures to manage post-wildfire damage are consistently valued as the most positive amongst the sampled respondents, achieving values that range between €25.92 in conditional logit model to €46 in one of the latent classes identified. Improving the landscape quality follows in importance, although it shows more heterogeneity in the responses. The latent class approach allowed to identify that those associated with either the agricultural or the tourism sector of the sampled individuals, displayed significantly different preferences for the proposed attributes. Overall, our findings indicate that there is a strong preference amongst the general public to shift current policies based on suppression towards more integrated approaches dealing both with prevention and post-fire management. The outcomes of this study serve to guide decision makers on targeted management plans based on their audience

    Adapting the ACMG/AMP variant classification framework: a perspective from the ClinGen Hemoglobinopathy Variant Curation Expert Panel

    Get PDF
    Accurate and consistent interpretation of sequence variants is integral to the delivery of safe and reliable diagnostic genetic services. To standardize the interpretation process, in 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published a joint guideline based on a set of shared standards for the classification of variants in Mendelian diseases. The generality of these standards and their subjective interpretation between laboratories has prompted efforts to reduce discordance of variant classifications, with a focus on the expert specification of the ACMG/AMP guidelines for individual genes or diseases. Herein, we describe our experience as a ClinGen Variant Curation Expert Panel to adapt the ACMG/AMP criteria for the classification of variants in three globin genes (HBB, HBA2, and HBA1) related to recessively inherited hemoglobinopathies, including five evidence categories, as use cases demonstrating the process of specification and the underlying rationale.Genetics of disease, diagnosis and treatmen

    Efficacy of customised foot orthoses in the treatment of achilles tendinopathy : study protocol for a randomised trial

    Get PDF
    BACKGROUND: Achilles tendinopathy is a common condition that can cause marked pain and disability. Numerous non-surgical treatments have been proposed for the treatment of this condition, but many of these treatments have a poor or non-existent evidence base. The exception to this is eccentric calf muscle exercises, which have become a standard non-surgical intervention for Achilles tendinopathy. Foot orthoses have also been advocated as a treatment for Achilles tendinopathy, but the long-term efficacy of foot orthoses for this condition is unknown. This manuscript describes the design of a randomised trial to evaluate the efficacy of customised foot orthoses to reduce pain and improve function in people with Achilles tendinopathy. METHODS: One hundred and forty community-dwelling men and women aged 18 to 55 years with Achilles tendinopathy (who satisfy inclusion and exclusion criteria) will be recruited. Participants will be randomised, using a computer-generated random number sequence, to either a control group (sham foot orthoses made from compressible ethylene vinyl acetate foam) or an experimental group (customised foot orthoses made from semi-rigid polypropylene). Both groups will be prescribed a calf muscle eccentric exercise program, however, the primary difference between the groups will be that the experimental group receive customised foot orthoses, while the control group receive sham foot orthoses. The participants will be instructed to perform eccentric exercises 2 times per day, 7 days per week, for 12 weeks. The primary outcome measure will be the total score of the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. The secondary outcome measures will be participant perception of treatment effect, comfort of the foot orthoses, use of co-interventions, frequency and severity of adverse events, level of physical activity and health-related quality of life (assessed using the Short-Form-36 questionnaire - Version two). Data will be collected at baseline, then at 1, 3, 6 and 12 months. Data will be analysed using the intention to treat principle. DISCUSSION: This study is the first randomised trial to evaluate the long-term efficacy of customised foot orthoses for the treatment of Achilles tendinopathy. The study has been pragmatically designed to ensure that the study findings are generalisable to clinical practice. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Number: ACTRN12609000829213

    TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    Get PDF
    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/

    Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure.</p> <p>Results</p> <p>We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods.</p> <p>Conclusions</p> <p>We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at <url>http://comp.chem.nottingham.ac.uk/disspred/</url>.</p

    Heterogeneous and opportunistic wireless networks

    Get PDF
    Recent years have witnessed the evolution of a large plethora of wireless technologies with different characteristics, as a response of the operators' and users' needs in terms of an efficient and ubiquitous delivery of advanced multimedia services. The wireless segment of network infrastructure has penetrated in our lives, and wireless connectivity has now reached a state where it is considered to be an indispensable service as electricity or water supply. Wireless data networks grow increasingly complex as a multiplicity of wireless information terminals with sophisticated capabilities get embedded in the infrastructure. © 2012 Springer Milan. All Right Reserved
    corecore