85 research outputs found

    Effects of photonic band gap of cholesteric liquid crystal on chemiluminescence

    Full text link
    We have fabricated glass cells filled with cholesteric liquid crystalline materials (CLC reflectors), which are mixtures of a nematic liquid crystalline mixture, ZLI-2293 (Merck), and a chiral dopant, MLC-6248 (Merck). We reported the enhancement of the maximum emission intensity of luminol reaction by the photonic band gap (PBG) of the CLC reflectors. Here, we report the effect of the relative position of PBG of the CLC reflectors to the emission spectra of luminol reaction on the enhancement of the maximum emission intensity. © 2015This is an Accepted Manuscript of an article published by Taylor & Francis in Molecular Crystals and Liquid Crystals on 24 May 2015, available at https://doi.org/10.1080/15421406.2015.1032725

    Proton Irradiation Experiment for the X-ray Charge-Coupled Devices of the Monitor of All-sky X-ray Image mission onboard the International Space Station: I. Experimental Setup and Measurement of the Charge Transfer Inefficiency

    Get PDF
    We have investigated the radiation damage effects on a CCD to be employed in the Japanese X-ray astronomy mission including the Monitor of All-sky X-ray Image (MAXI) onboard the International Space Station (ISS). Since low energy protons release their energy mainly at the charge transfer channel, resulting a decrease of the charge transfer efficiency, we thus focused on the low energy protons in our experiments. A 171 keV to 3.91 MeV proton beam was irradiated to a given device. We measured the degradation of the charge transfer inefficiency (CTI) as a function of incremental fluence. A 292 keV proton beam degraded the CTI most seriously. Taking into account the proton energy dependence of the CTI, we confirmed that the transfer channel has the lowest radiation tolerance. We have also developed the different device architectures to reduce the radiation damage in orbit. Among them, the ``notch'' CCD, in which the buried channel implant concentration is increased, resulting in a deeper potential well than outside, has three times higher radiation tolerance than that of the normal CCD. We then estimated the charge transfer inefficiency of the CCD in the orbit of ISS, considering the proton energy spectrum. The CTI value is estimated to be 1.1e-5 per each transfer after two years of mission life in the worse case analysis if the highest radiation-tolerant device is employed. This value is well within the acceptable limit and we have confirmed the high radiation-tolerance of CCDs for the MAXI mission.Comment: 17 pages, 2 table, 12 figures. Accepted for publication of Japanese Journal of Applied Physics. High resolution file is available from http://wwwxray.ess.sci.osaka-u.ac.jp/~miyata/paper/proton_cti.pd

    Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Get PDF
    Nitrous oxide (N2O), a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH) or reduction of nitrite (NO2-) during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP) is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system) or N2 (in the case of advanced system) by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO) concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS). Ammonium (NH4+) consumption was accompanied by increment of nitrite (NO2-), and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1) in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3-) suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification).DOI: http://doi.dx.org/10.5564/mjc.v15i0.313Mongolian Journal of Chemistry  15 (41), 2014, p4-10

    Real-Time Observation of Hydrogen Peroxide Transport through the Oil Phase in a W/O/W Double Emulsion with Chemiluminescence Emission

    Full text link
    The evaluation of the transport rates of hydrophilic substances is important in agricultural and pharmaceutical chemistry and in the cosmetics and food-processing industries. Although there are some estimation methods focusing on the diffusion of the substances through the oil phase of the W/O/W core-shell double emulsions (oil microcapsules), all of them take several hours or days. This long-time measurement has a risk of rupture of the oil microcapsules, which causes significant errors. If it were possible to measure the transport rate of substances in the oil phase of the oil microcapsules in real time, the risk of rupture could be reduced. Here, we propose a new estimation method for the transport rates of hydrogen peroxide (H2O2) in the oil phase of an oil microcapsule for real-time estimation by means of chemiluminescence (CL) emission of the luminol reaction. We theoretically give the relationship among the CL emission intensity, diffusion coefficient, microcapsule size, and experimental time and successfully estimate the diffusion coefficient of H2O2 in the oil phase of the oil microcapsule from the experimental data. Moreover, we discuss the dependence of the permeation of H2O2 through the oil phase on the concentration of the oil-soluble surfactant; the difference in the permeation rate is likely to be attributed not to the diffusion coefficient but to the partition coefficient of H2O2 in the oil microcapsule.Hiroshi Kouno, Yosuke Iwai, Yoshiaki Uchida et al. Real-Time Observation of Hydrogen Peroxide Transport through the Oil Phase in a W/O/W Double Emulsion with Chemiluminescence Emission. Langmuir, 33 (15), 3802-3808, April 17, © 2017 American Chemical Society. https://doi.org/10.1021/acs.langmuir.7b0010

    Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points

    Full text link
    We propose a new method to fabricate mono-dispersed liquid crystalline (LC) microcapsules with shells consisting of LC materials showing high viscosity and/or high melting points at room temperature. In this method, it is important to control the state of the shell phase by the addition and removal of agents inducing LC-to-isotropic phase transitions and vice versa, respectively, at the right times.Reproduced from J. Mater. Chem. C , 2017, 5, 1303-1307 with permission from the Royal Society of Chemistry.https://doi.org/10.1039/c6tc05267

    Weak hydrogen bonding motifs of ethylamino neurotransmitter radical cations in a hydrophobic environment: infrared spectra of tryptamine(+)-(N-2)(n) clusters (n <= 6)

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Size-selected clusters of the tryptamine cation with N2 ligands, TRA+–(N2)n with n = 1–6, are investigated by infrared photodissociation (IRPD) spectroscopy in the hydride stretch range and quantum chemical calculations at the ωB97X-D/cc-pVTZ level to characterize the microsolvation of this prototypical aromatic ethylamino neurotransmitter radical cation in a nonpolar solvent. Two types of structural isomers exhibiting different interaction motifs are identified for the TRA+–N2 dimer, namely the TRA+–N2(H) global minimum, in which N2 forms a linear hydrogen bond (H-bond) to the indolic NH group, and the less stable TRA+–N2(π) local minima, in which N2 binds to the aromatic π electron system of the indolic pyrrole ring. The IRPD spectrum of TRA+–(N2)2 is consistent with contributions from two structural H-bound isomers with similar calculated stabilization energies. The first isomer, denoted as TRA+–(N2)2(2H), exhibits an asymmetric bifurcated planar H-bonding motif, in which both N2 ligands are attached to the indolic NH group in the aromatic plane via H-bonding and charge–quadrupole interactions. The second isomer, denoted as TRA+–(N2)2(H/π), has a single and nearly linear H-bond of the first N2 ligand to the indolic NH group, whereas the second ligand is π-bonded to the pyrrole ring. The natural bond orbital analysis of TRA+–(N2)2 reveals that the total stability of these types of clusters is not only controlled by the local H-bond strengths between the indolic NH group and the N2 ligands but also by a subtle balance between various contributing intermolecular interactions, including local H-bonds, charge–quadrupole and induction interactions, dispersion, and exchange repulsion. The systematic spectral shifts as a function of cluster size suggest that the larger TRA+–(N2)n clusters with n = 3–6 are composed of the strongly bound TRA+–(N2)2(2H) core ion to which further N2 ligands are weakly attached to either the π electron system or the indolic NH proton by stacking and charge–quadrupole forces

    Structural Insights Into RNA Bridging Between HIV-1 Vif and Antiviral Factor APOBEC3G

    Get PDF
    Great effort has been devoted to discovering the basis of A3G-Vif interaction, the key event of HIV\u27s counteraction mechanism to evade antiviral innate immune response. Here we show reconstitution of the A3G-Vif complex and subsequent A3G ubiquitination in vitro and report the cryo-EM structure of the A3G-Vif complex at 2.8 Å resolution using solubility-enhanced variants of A3G and Vif. We present an atomic model of the A3G-Vif interface, which assembles via known amino acid determinants. This assembly is not achieved by protein-protein interaction alone, but also involves RNA. The cryo-EM structure and in vitro ubiquitination assays identify an adenine/guanine base preference for the interaction and a unique Vif-ribose contact. This establishes the biological significance of an RNA ligand. Further assessment of interactions between A3G, Vif, and RNA ligands show that the A3G-Vif assembly and subsequent ubiquitination can be controlled by amino acid mutations at the interface or by polynucleotide modification, suggesting that a specific chemical moiety would be a promising pharmacophore to inhibit the A3G-Vif interaction

    Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity

    Get PDF
    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5\u27-3\u27 directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics

    Lack of association between the CARD10 rs6000782 polymorphism and type 1 autoimmune hepatitis in a Japanese population

    Get PDF
    Background: Previous genome-wide association studies have evaluated the impact of common genetic variants and identified several non-HLA risk loci associated with autoimmune liver diseases. More recent genome-wide association studies and replication analyses reported an association between variants of the CARD10 polymorphism rs6000782 and risk of type 1 autoimmune hepatitis (AIH). In this case-control study, we genotyped 326 Japanese AIH patients and 214 control subjects. Results: Genomic DNA from 540 individuals of Japanese origin, including 326 patients with type-1 AIH and 214 healthy controls, was analyzed for two single nucleotide polymorphisms (SNPs) in the CARD10 gene. We selected CARD10 rs6000782 SNPs and genotyped these using PCR-RFLP method and direct sequencing. The Chi square test revealed that the rs6000782 variant alle (c) was not associated with the susceptibility for AIH in a Japanese population [p = 0.376, odds ratio (OR) 1.271, 95 % confidence interval (CI) 0.747-2.161] in an allele model. Our data also showed that CARD10 rs6000782 variants were not associated with AIH or with the clinical parameters of AIH. Conclusions: In this study we examined an association between rs6000782 SNPs in the CARD10 gene and type-1 AIH. Results showed no significant association of rs62000782 with type-1 AIH in a Japanese population. This study demonstrated no association between CARD10 rs6000782 variants and AIH in a Japanese population

    Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages

    Get PDF
    Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei READE) were investigated in detail. The major phenolic components were caffeoyl quinic acids, flavonol glycosides, flavan-3-ols and proanthocyanidins. Catechins and proanthocyanidins having additional phenylpropanoid units, such as cinchonains, kandelins and mururins, characterised the polyphenols of this plant. Among them, vaccinin A, an isomer of mururin A, was found to be a new compound, and the structure was characterised by spectroscopic methods. The most abundant polyphenols (11.3% of freeze-dried leaves) were oligomeric proanthocyanidins. Thiol degradation with mercaptoethanol indicated that the polymer was constituted of (+)-catechin and (-)-epicatechin as the terminal units and (-)-epicatechin, procyanidin A-2, and cinchonains Ia and Ib as the extension units. Mass spectral analysis suggested the presence of at least dodecamers with A-type linkages and phenylpropanoid moieties
    • …
    corecore