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Abstract: Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei 

READE) were investigated in detail. The major phenolic components were caffeoyl 

quinic acids, flavonol glycosides, flavan-3-ols and proanthocyanidins. Catechins and 

proanthocyanidins having additional phenylpropanoid units, such as cinchonains, 

kandelins and mururins, characterized the polyphenols of this plant. Among them, 

vaccinin A, an isomer of mururin A, was found to be a new compound, and the structure 

was characterized by spectroscopic methods. The most abundant polyphenols (11.3% of 

freeze dried leaves) were oligomeric proanthocyanidins. Thiol degradation with 

mercaptoethanol indicated that the polymer was constituted of (+)-catechin and 

(-)-epicatechin as the terminal units and (-)-epicatechin, procyanidin A-2, and 

cinchonains Ia and Ib as the extension units. Mass spectral analysis suggested the 

presence of at least dodecamers with A-type linkages and phenylpropanoid moieties. 

 

Keywords: blueberry; Vaccinium ashei; polyphenol; proanthocyanidin; catechin; 
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1. Introduction 

Many reports have suggested that blueberry fruits have various biological activities, 

including prevention of urinary tract infections (Jepson & Craig, 2007), antioxidative 

(Dulebohn, Yi, Srivastava, Akoh, Krewer & Fischer, 2008; Castrejón, Eichholz, Rohn, 

Kroh & Huyskens-Keil, 2008) and anticancer activities (Seeram, 2008; Neto, 2007). 

The fruit anthocyanins and proanthocyanidins are believed to be responsible for the 

activities (Gu, Kelm, Hammerstone, Beecher, Cunningham, Vannozzi, & Prior, 2002; 

Prior, Lazarus, Cao, Muccitelli, & Hammerstone, 2001). The leaves have been known to 

be used in a tea for diabetics among the alpine peasantry (Allen, 1927; Watson, 1928). 

More recently, strong oxygen radical absorbance capacity (Ehlenfeldt & Prior, 2001), 

hypotensive effects (Sakaida, Nagao, Higa, Shirouchi, Inoue, Hidaka, Kai, & Yanagita, 

2007), hypolipidemic effects (Nagao, Higa, Shirouchi, Nomura, Inoue, Inafuku, & 

Yanagita, 2008), and antileukemic activity (Skupień, Oszmiański, Kostrzewa-Nowak, & 

Tarasiuk, 2006) of the leaves have been reported. However, the detail of the chemical 

constituents of the leaves has not yet been clarified. Only the presence of a large amount 

of polyphenols and tannins has been identified (Ehlenfeldt & Prior, 2001; Naczk, Grant, 

Zadernowski & Barre, 2006). In this study we investigated the chemical constituents in 

the leaves of rabbiteye blueberry (Vaccinium ashei READE, Ericaceae), which is tolerant 
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to heat and drought and thus is cultivated in the southern part of Japan. The structures of 

polyphenols, including oligomeric proanthocyanidins, were clarified in detail using 

spectroscopic and chemical methods.  

 

2. Materials and methods 

2.1. Materials 

The fresh leaves of rabbiteye blueberry were cultivated and collected at Unkai 

Shuzo Co., Ltd., Miyazaki, Japan. The leaves were freeze-dried, pulverized and stored 

at -20ºC until use. 

 

2.2. Analytical Procedures 

UV spectra were obtained with a JASCO V-560 UV/VIS spectrophotometer 

(JASCO Co., Tokyp, Japan). 1H and 13C NMR spectra were recorded in a mixture of 

acetone-d6 and D2O (19:1, v/v) at 27ºC with a JEOL JNM-AL400 spectrometer (JEOL 

Ltd., Tokyo, Japan) operating at 400 MHz for 1H and 100 MHz for 13C. 1H-1H COSY, 

NOESY, HSQC and HMBC spectra were recorded in a mixture of acetone-d6 using a 

Varian Unity plus 500 spectrometer (Varian Inc., Palo Alto, CA, USA) operating at 500 

MHz for 1H and 125 MHz for 13C. Coupling constants are expressed in Hz and chemical 
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shifts are given on a  (ppm) scale. HMQC, HMBC and NOESY experiments were 

performed using standard Varian pulse sequences. The matrix-assisted laser desorption 

time-of-flight mass spectra (MALDI TOF MS) were recorded on a Voyager-DE Pro 

spectrometer (Applied Biosystems, USA), and 2, 5-dihydroxybenzoic acid (10 mg/ml in 

50% acetone containing 0.05% trifluoroacetic acid) was used as the matrix. Fast atom 

bombardment (FAB) MS was recorded on a JMS 700N spectrometer (JEOL Ltd., Japan), 

and m-nitrobenzyl alcohol or glycerol was used as a matrix.  

Column chromatography was performed using Sephadex LH-20 (25-100 �m, 

GE Healthcare Bio-Science AB, Uppsala), Diaion HP20SS (Mitsubishi Chemical, 

Japan), MCI gel CHP 20P (75–150 m; Mitsubishi Chemical, Tokyo, Japan), 

Chromatorex ODS (100–200 mesh; Fuji Silysia Chemical, Kasugai, Japan), and Silica 

gel 60 N (Kanto Chemical Co., Inc., Tokyo, Japan). Thin layer chromatography was 

performed on precoated Kieselgel 60 F254 plates (0.2 mm thick, Merck KGaA, 

Darmstadt, Germany) with toluene-ethyl formate-formic acid (1:7:1, v/v), 

CHCl3-MeOH-water (14:6:1, v/v) and Cellulose F254 (0.2-mm thick, Merck) with 2% 

AcOH. Spots were detected using ultraviolet (UV) illumination and by spraying with 

2% ethanolic FeCl3 or 10% sulfuric acid reagent followed by heating. Analytical HPLC 

was performed on a Cosmosil 5C18-AR II (Nacalai Tesque Inc., Kyoto, Japan) column 
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(4.6 mm i.d. × 250 mm) with gradient elution from 4–30% (39 min) and 30–75% (15 

min) of CH3CN in 50 mM H3PO4, flow rate, 0.8 ml/min; detection, JASCO photodiode 

array detector MD-910.  

 

2.3. Extraction and separation 

The freeze-dried leaves (500 g) were pulverized and extracted with methanol (3 

l) three times and filtered. The plant debris was further extracted with 70% acetone (3 l) 

two times and filtered. The filtrate was combined, concentrated by rotary evaporator 

(Tokyo Rikakikai Co., Ltd., Tokyo, Japan) and dried under vacuum to give the extract 

(304 g). The extract was suspended in water and successively partitioned with hexane, 

Et2O to give hexane (13.7 g) and Et2O (11.3 g) soluble fractions. TLC analysis indicated 

that the hexane soluble fraction mainly contained chlorophyll and waxes and was not 

examined further. The Et2O layer was repeatedly chromatographed over Silica gel 

(CHCl3-MeOH-H2O, 95:5:0, 90:10:1, 40:10:1, 14:6:1, v/v).  

The aqueous layer was separated by Sephadex LH-20 column chromatography 

with H2O containing increasing proportions of MeOH to give three fractions: Aq-1, 

Aq-2 (42.7 g), and Aq-3 (51.9 g).  

The Aq-1 was applied to a Diaion HP20SS column (H2O-MeOH) and eluted 
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with H2O containing increasing proportions of MeOH (10 % – 100 %) to give fractions 

Aq-1-1 (110 g), Aq-1-2 (29.5 g) and Aq-1-3 (28.5 g). A portion (11 g) of the Aq-1-1 was 

acetylated with Ac2O (100 ml) and pyridine (100 ml) at room temperature for 10 h and 

then 80ºC for 1 h. After evaporation of the reagent by rotary evaporator the syrup was 

separated by Silica gel column chromatography (20 – 50 % acetone in hexane) to yield 

tetraacetyl quinic acid (5.77 g) and octaacetyl sucrose (3.28 g).  

The Aq-1-2 and Aq-1-3 were separately chromatographed over Sephadex 

LH-20 (H2O-MeOH) to give fractions Aq-1-2-1 (7.3 g), Aq-1-2-2 (19.2 g), Aq-1-3-1 

(7.5 g) and Aq-1-3-2 (20.6 g). The fractions Aq-1-2-1 and Aq-1-3-1 were separately 

subjected to a combination of chromatography over Diaion HP20SS (H2O-MeOH), 

Chromatorex ODS (H2O-MeOH), and silica gel (CHCl3-MeOH-H2O).  

The fraction Aq-2 was separated by Diaion HP20SS (H2O-MeOH). Aq-3 was 

fractionated by Diaion HP20SS (H2O-MeOH).into three fractions: Aq-3-1 (10.7 g), 

Aq-3-2 (9.7 g), and Aq-3-3 (16.9 g). The fractions Aq-3-1 and Aq-3-2 were separately 

subjected to a combination of chromatography over Diaion HP20SS (H2O-MeOH), 

Chromatorex ODS (H2O-MeOH), and silica gel (CHCl3-MeOH-H2O).  

The fractions Aq-1-2-2, Aq-1-3-2 and Aq-3-3 were characterized to be 

polymeric proanthocyanidins by reddish coloration with vanillin-HCl reagent and 
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HPLC analysis of the thiol degradation products.  

 

2.4. Vaccinin A (19)  

A yellow amorphous powder; []20
D -15.5 (c=0.07, acetone-H2O, 9:1); UV (MeOH) 

max nm (log ): 217 (4.58), 271 (4.02), 314 (4.08), 347 sh (3.98), 374 sh (4.02), 390 

(4.07); CD (MeOH)  (nm): 0 (224), +133.9 (240), 0 (260), -5.36 (271), 0 (278), +23.0 

(295), 0 (326), -11.8 (347); IR (dry film) max cm-1: 3250, 2922, 1674, 1615, 1562, 1519, 

1469, 1432; FAB-MS m/z: 449 [M+H]+; HR-FAB-MS m/z: 449.0873 [M+H]+ (Calcd for 

C24H17O9: 449.0873); for the 1H and 13C-NMR data see Table 2. 

 

2.5. Thiol degradation 

 The fraction Aq-3-3 (10.0 g) was dissolved in a solution (1.0 l) consisting of 

2-mercaptoethanol (50.0 ml), 0.5M HCl (80 ml), H2O (320 ml) and EtOH (550 ml), and 

the mixture was heated at 70ºC for 10 h (Tanaka, Takahashi, Kouno, & Nonaka, 1994). 

After concentration by rotary evaporator, the aqueous solution was fractionated by 

Sephadex LH-20 column chromatography (5.5 cm i.d. × 30 cm) with H2O containing 

increasing proportions of MeOH to give three fractions: TD-1 (5.15 g), TD-2 (1.42 g) 

and TD-3 (4.00 g). The TD-1 was separated by MCI-gel CHP20P, Chromatorex ODS, 
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and Sephadex LH-20 column chromatography to give 3 (99.6 mg), 4 (62.1 mg), and 

(-)-epicatechin 4-(2-hydroxyethyl)thioether (4a) (2.4 g) (Tanaka et al., 1994). Similar 

separation of TD-2 afforded cinchonain Ia 4-(2-hydroxyethyl)thioether (11a) (340.6 mg), 

cinchonain Ib 4-(2-hydroxyethyl)thioether (12a) (166.6 mg), cinchonain IIb 

4''-(2-hydroxyethyl)thioether (16a) (38.2 mg). From TD-3, 8 (131.8 mg), 9 (30.1 mg), 

and procyanidin A-2 4'-(2-hydroxyethyl)thioether (20) (411.2 mg) (Tanaka, Kondou, & 

Kouno, 2000) were isolated. 

Cinchonain Ia 4-(2-hydroxyethyl) thioether (11a) 

A tan amorphous powder, []D
21 -85.1º (c=0.1, MeOH), FAB-MS m/z 529 

[M+H]+ HR-FAB-MS m/z 529.1174 (Calcd for C26H25O10S: 529.1168); IR (dry film) 

max cm-1: 3388, 1746, 1615, 1521, 1446; UV (MeOH) max nm (log ): 282 (3.94); for 

the 1H and 13C-NMR data see Table 3. 

Cinchonain Ib 4-(2-hydroxyethyl) thioether (12a) 

A tan amorphous powder, []D
22 76.2 (c=0.1, MeOH), FAB-MS m/z: 529 

[M+H]+, HR-FAB-MS m/z: 529.1163 (Calcd for C26H25O10S: 529.1168); IR (dry film) 

max cm-1: 3389, 1745, 1613, 1520, 1443; UV (MeOH) max nm (log ): 282 (3.95) ); for 

the 1H and 13C-NMR data see Table 3. 

Cinchonain IIb 4''-(2-hydroxyethyl) thioether (16a) 
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A tan amorphous powder, []D
28  +149.3º (c=0.1, MeOH), FAB-MS m/z 817 

[M+H]+; HR-FAB-MS m/z 817.1813 (Calcd for C41H37O16S: 817.1802); IR (dry film) 

max cm-1: 3389, 1739, 1613, 1519, 1443; UV (MeOH) max nm (log ): 206 (4.92), 223 

sh (4.74), 282 (3.95) ); for the 1H and 13C-NMR data see Table 3. 

 

2.6. Desulfurization of thioethers. 

The structures of thioethers 11a, 12a, 16a, and 20 were confirmed by 

desulfurization (Nonaka, et al., 1982). A thioether (10-15 mg) in EtOH (3 ml) was 

treated with Raney-nickel (W-4) at room temperature for 30 min. After filtration, the 

filtrate was concentrated and the residue was purified by Sephadex LH-20 (EtOH). The 

products were identified by comparison of physicochemical and 1H NMR data with 

those of authentic samples. 

 

3. Results and discussion 

First, the extract was partitioned with n-hexane and Et2O. The hexane layer 

mainly contained chlorophylls and waxes. From the Et2O layer p-hydroxybenzoic acid 

and two digalactosyl glycerolipids were isolated. A major part of the constituents 

remained in the aqueous layer, and chromatographic separation yielded compounds 
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listed in Table 1. The presence of a large amount of quinic acid was confirmed by 

isolation of their acetate derivatives. From the yield of the acetate, the quinic acid 

content was estimated to be about 6 % of the freeze dried leaves. On HPLC analysis, 

chlorogenic acid (1) and rutin (2) were found to be major phenolic constituents of the 

leaves, and their concentration in the freeze dried leaves was estimated to be 2.0% and 

0.48%, respectively, by HPLC analysis. The presence of a large amount of 

proanthocyanidins was shown using a vanillin-HCl test on thin-layer chromatography. 

Although most proanthocyanidins are astringent and bitter, two A-type 

proanthocyanidin trimers 8 and 9 isolated in this experiment (Fig. 1) are known to have 

a sweet taste (Morimoto et al., 1985). In addition, the presence of phenylpropanoid 

substituted catechins (10 – 12, 17 – 19) and procyanidins (13 – 16) is characteristic of 

the leaves. The phenylpropanoid units are structurally related to the caffeic acid, and 

this is probably related to the coexistence of a large amount of caffeoyl quinic acids. In 

vitro biomimetic synthesis of the cinchonains from catechin and caffeic acid has been 

achieved (Chen et al., 1993). Mururins A (17) and B (18) are oxidative metabolites of 

cinchonain isomers having phenylpropanoid units at the C-6 position, and these 

compounds were only found in Brosimum acutifolium before this study (Takashima et al., 

2002). 
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A new compound named vaccinin A (19) was obtained as a yellow amorphous 

powder and showed UV absorption bands at 271, 314, and 390 nm. The high-resolution 

FAB-MS (m/z 449.0873 [M+H]+, C24H16O9) suggested that this compound is an isomer 

of mururins. The 1H and 13C NMR spectroscopic data (Table 2) were closely related to 

those of mururin A (17), showing signals attributable to tri-, tetra- and penta-substituted 

aromatic rings, one enone system, two oxygenated methines and a benzylic methylene. 

The oxygenated methine proton at δ 4.89 was assignable to the C-ring H-2, and its 

relatively large coupling constant (6.9 Hz) indicated 2,3-trans configuration of the 

C-ring. The HMBC correlations of the C-ring H-2 and H-4 and A-ring aromatic proton 

at δ 6.51 illustrated in Fig. 2 confirmed the presence of a catechin moiety in the 

molecule. The remaining 9 sp2 carbon signals arising from the caffeoyl moiety (C-1'' – 

C-9'') were almost the same as those of 17. The degree of unsaturation (17) calculated 

from the molecular formula as well as the spectroscopic similarity between these two 

compounds indicated that the C-7'' of the caffeoyl moiety was attached to the C-6 of the 

A-ring, and both oxygen atoms at the C-5 and C-7 form ether or lactone rings. This was 

supported by the appearance of a correlation peak between H-8'' and the A-ring of C-6. 

The difference between 19 and 17 was the chemical shifts of the oxygen-bearing A-ring 

carbons. The C-7 and C-5 signals were distinguishable by observation of HMBC 
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correlation with H-4. The C-5 signal at δ 149.0 was observed at higher field compared 

with that of 17 (δ 153.0), and inversely, the C-7 resonated at lower field δ 153.6 

compared with that of 17 (δ 150.0). This observation strongly suggested that the 

carboxyl group of the caffeoyl moiety was connected to the C-7 oxygen and the C-5 

oxygen forms a pyran ring by oxidative coupling with the C-6'' of the catechol ring. 

Thus, 19 and 17 differ in the arrangement of the caffeoyl moiety. The absolute 

configuration was determined to be the same as that of 17 by comparison of CD spectral 

data. It is noteworthy that in this study we did not identify cinchonain isomers having 

phenylpropanoid units at the C-6 position of the catechin A-ring. The catechol ring of 

the caffeoyl moiety in the C-6 isomers may be oxidized to form pyran rings with a C-5 

or C-7 hydroxyl group.  

Besides these compounds with relatively low molecular weights, the extract 

contained a large amount of oligomeric and polymeric proanthocyanidins. The isolation 

yield of the oligomers was 11.3 % of freeze dried leaves (Table 1). The oligomers were 

observed as a broad hump on the base line on HPLC analysis and remained at the origin 

on silica gel TLC analysis. To determine the structural components, the 

proanthocyanidins underwent thiol degradation with mercaptoethanol under acidic 

conditions. The products indicated that terminal units of the oligomers (the terminal 
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units having CH2 structure at the C-4 position) were (+)-catechin (3) and (-)-epicatechin 

(4) (the ratio is about 3:2). Epicatechin-(4→8, 2→7)-epicatechin-(4→8)-catechin 

(8) and epicatechin-(4→8, 2→7)-epicatechin-(4→8)-epicatechin (9) were also 

isolated as the terminal units. The extension units were obtained as 

4-(2-hydroxyethyl)-thioethers (4a, 11a, 12a, and 20) in this thiol degradation (Fig. 3), 

and the structures were confirmed by reductive desulfurization with Raney Ni. The most 

dominant extension unit was (-)-epicatechin (about 71% of the extension units), 

followed by procyanidins A-2 (17.7%), cinchonain Ia (7.5%), and cinchonain Ib (3.4%). 

A small amount of cinchonain IIb thioether (16a) (0.5%) was also isolated, and this may 

suggest that the caffeic acid reacts with the stereochemically unhindered upper terminal 

units of the proanthocyanidin chains with free C-8 and C-6 positions. A rough estimate 

based on yield of the thiol degradation products suggested the degree of the 

oligomerization is about 12. To avoid excess complexity of the products by side 

reactions such as cleavage of C-rings, the thiol degradation was terminated before 

complete degradation; therefore, the yield of the products may not reflect the actual 

composition. However, obviously the presence of A-type linkage and cinchonain units 

characterizes the blueberry leaf proanthocyanidin oligomers. This was also 

demonstrated by the MALDI-TOF MS analysis of the oligomer fractions (Fig. 4). The 
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spectrum exhibited two series of peaks: one is assignable to proanthocyanidins 

composed of usual flavan-3-ol units with one or two A-type linkages, and the other is 

proanthocyanidins with one additional caffeic acid moiety and A-type linkages. The 

spectrum indicated the presence of at least dodecamers. Due to the low sensitivity to 

proanthocyanidins with higher molecular weights, probably proanthocyanidins larger 

than dodecamers are present.   

 

4. Conclusion 

This study revealed that the polyphenols of blueberry leaves are mainly 

composed of proanthocyanidins, followed by caffeoyl quinic acids and flavonol 

glycosides. The proanthocyanidins was characterized by the presence of A-type linkages 

and cinchonain units. It was deduced from the concentration in the leaves that the 

polyphenols, especially the oligomeric proanthocyanidins, contribute to the biological 

activities of the blueberry leaves.  
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Figure Captions 

 

Fig. 1 Structures of major polyphenols isolated from rabbiteye blueberry leaves 

 

Fig. 2 Selected HMBC correlations observed for vaccinin A (19) 

 

Fig. 3 Thioethers obtained by thiol degradation of oligomeric proanthocyanidins 

 

Fig. 4 MALDI-TOF-MS of the oligomeric proanthocyanidin fraction of rabbiteye 

blueberry leaves and a possible structure. CA: caffeic acid moiety
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Table 1  
Compunds isolated from the Et2O layer and aqueous layer of the leaves of Rabbiteye blueberry

fractions compounds Isolation yeld (%)a references
Et2O layer

p -hydroxybenzoic acid 0.002 d

1,2-dilinolenyl-3-O -(α-D-galactopyranosyl-(1→6)-O -β-D-galactopyranosyl)-glycerol 0.006 Murakami, Morimoto, Imanuma, Ueda, Nagai, Sakakibara, & Yamada, 1991
2-linolenyl-1-stearyl-3-O -(α-D-galactopyranosyl-(1→6)-O -β-D- galactopyranosyl)-glycerol 0.041 Murakami, et al., 1991

Aqueous layer
Aq. 1-1 quinic acidb 6.16 Haslam, & Turner, 1971

sucrosec 3.30 d

Aq. 1-2-1 maltol βD-glucoside   0.003 Li, Nakashima, Tanaka, Zhang, Yang, Kouno, 2008
benzylalcohol O -α-L-arabinofuranosyl-(1→6)-O - β-D-glucopyranoside   0.006 López-Tamames, Carro-Mariño, Gunata, Sapis, Baumes, & Bayonove, 1997
benzylalcohol O -α-L-arabinopyranosyl-β-D-glucopyranoside   0.011 Chassagne, Crouzet, Bayonove, Brillouet, & Baumes, 1996
2-(3',4'-dihydroxyphenyl)-ethanol 3'-O -β-D-glucopyranoside   0.009 Sugiyama, & Kikuchi, 1992
4-hydroxy-3,5-dimethoxybenzyl alcohol 4-O -β-D-glucopyranoside   0.004 Kitajima, Ishikawa, Tanaka, Ono, Ito, Nohara, 1998
4-(3',4'-dihydroxyphenyl)-butan-2-one 3'-O -β-D-glucoside   0.006 Reyes, Muñoz, Garcia, & Cox, 1986
blumenol B β-D-glucopyranoside   0.003 Miyase, Ueno, Takizawa, Kobayashi, & Oguchi, 1988
icariside B1   0.012 Miyase, Ueno, Takizawa, Kobayashi, & Karasawa, 1987

Aq. 1-3 icariside B6   0.017 Miyase et al., 1988
quercetin 3-O -β-D-xylosyl-(1→2)-α-L-rhamnosyl-(1→6)-β-D-glucoside   0.004 Price, Colquhoun, Barnes, & Rhodes, 1998
camelliaside B (kaempferol 3-O -β-D-xylosyl-(1→2)-α-L-rhamnosyl-(1→6)-β-D-glucoside)   0.007 Sekine, Arita, Yamaguchi, Saito, Okonogi, Morisaki, Iwasaki, & Murakoshi, 199

Aq. 2 rutin (quercetin 3-O -α-L-rhamnosyl-(1→6)-β-D-glucoside) (2)   0.92 d

chlorogenic acid (1)   2.28 d

Aq. 3-1 quercetin 3-O -α-L-rhamnoside   0.022 Price et al., 1998
quercetin 3-O -β-D-glucuronide   0.060 Price et al., 1998
quercetin 3-O -β-D-glucoside   0.020 d

quercetin 3-O -[4''-(3-hydroxy-3-methylglutaroyl)]-α-L-rhamnoside   0.005 Ek, Kartimo, Mattila, & Tolonen, 2006
kaempferol 3-O -α-L-rhamnosyl-(1→6)-β-D-glucoside   0.001 d

3,5-di-O -caffeoyl quinic acid   0.107 d

4,5-di-O -caffeoyl quinic acid   0.013 d

3,5-di-O -caffeoyl quinic acid methyl ester   0.001
(+)-catechin (3)   0.015 d

(-)-epicatechin (4)   0.005 d

procyanidin B-1 (5)   0.008 Nonaka, Nishioka, Nagasawa, & Oura, 1981
procyanidin B-2 (6)   0.006 Khan, Halson, Williamson, 1997
procyanidin C-1 (7)   0.002 Nonaka G., Kawahara O., & Nishioka I., 1982
epicatechin-(4β→8, 2β→7)-epicatechin- (4α→8)-catechin (8)   0.008 Morimoto, Nonaka, Nishioka, 1985
epicatechin-(4β→8, 2β→7)-epicatechin- (4α→8)-epicatechin (9)   0.010 Nonaka, Morimoto, & Nishioka, 1983
[2R -(2α,3β,10β)]-2,10-bis(3,4-dihydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-
2H,8H-benzo[1,2-b:3,4-b']dipyran-8-one (10)   0.003 Chen, Tanaka, Nonaka, Fujioka, & Mihashi, 1993

cinchonain Ia (11)   0.022 Chen, et al., 1993
cinchonain Ib (12)   0.011 Chen, et al., 1993
kandelin A-1 (13)   0.003 Hsu, Nonaka, & Nishioka, 1985; Chen et al., 1993
kandelin A-2 (14)   0.004 Hsu, et al., 1985; Chen et al., 1993
cinchonain IIa (15)   0.015 Nonaka et al., 1982; Chen et al., 1993
cinchonain IIb (16)   0.021 Nonaka et al., 1982; Chen et al., 1993
mururin A (17)   0.017 Takashima, Asano, & Ohsaki, 2002
mururin B (18)   0.001 Takashima, et al., 2002
vaccinin A (19)   0.001

Aq. 1-2-2,
Aq. 1-3-2,
Aq. 3-3

oligomeric proanthocyanidins 11.34

a From freeze dried leaves (500g).
b Isolated as tetraacetate after acetylation with Ac2O and pyridine.
b Isolated as octaacetate after acetylation with Ac2O and pyridine.
d Identified by comparison of the 1H and 13C NMR data with those of authentic samples.  1 
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Table 2 

1H 13C 1H 13C
2 4.89 (d, 6.9) 83.0 4.87 (d, 6.8) 83.0

3 4.21 (m) 66.5 4.18 (m) 66.5

4 2.81 (dd, 16.3, 7.8) 26.9 2.75 (dd, 16.4, 7.8) 26.9

3.03 (dd, 16.3, 5.2) 2.96 (dd, 16.4, 4.9)

4a 104.2 104.6 c

5 149.0 153.0

6 100.7 100.9

7 153.6 150.0

8 6.51 (s) 98.3 6.48 (s) 98.2

8a 158.9 159.2

1' 130.7 130.7

2' 6.89 (d, 1.6) 114.7 6.87 (d, 2.0) 115.0 d

3' 145.7 145.9 e

4' 145.9 145.8 e

5' 6.80 (d, 8.0) 115.7 6.78 (d, 8.3) 116.0 d

6' 6.73 (dd, 8.0, 1.6) 119.3 6.71 (dd, 8.3, 2.0) 119.5

1'' 107.5 107.5

2'' 152.7 152.7

3'' 6.86 (s) 104.2 6.72 (s) 104.1 c

4'' 147.9 148.1

5'' 144.5 144.4 f

6'' 7.35 (s) 108.9 7.27 (s) 109.1

7'' 142.6 143.2 f

8'' 6.03 (s) 93.1 6.01 (s) 92.7

9'' 162.7 163.5
a  Measured at 500 MHz for 1H and 125 MHz for 13C.
b  Measured at 400 MHz for 1H and 100 MHz for 13C.
c  f  Assignments may be interchanged in each column.

1H and 13C NMR data for vaccinin A (19)a  and mururin A(17)b  in acetone-d6+D2O (δ in ppm, J  in Hz)

19 17
Position

 3 

 4 
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Table 3

1H 13C 1H 13C Position 1H 13C Position 1H 13C

2 5.22 (br s) 75.3 5.3 (br s) 75.6 2 5.57 (s) 75.4 a 2'' 4.76 (s) 76.5 a

3 4.12 (br s) 71.1 4.11 (br s) 71.2 3 3.99 (br s) 71.7 b 3'' 3.68 (br s) 72.1 b

4 4.14 (d, 2.0) 43.2 4.14 (d, 2.0) 43.2 4 4.64 (br s) 36.6 c 4'' 4.02 (d, 2.0) 44.1
4a 104.9 104.9 4a 105.1 4a'' 99.9
5 157.5 157.3 5 156.4 d 5'' 156.4 d

6 6.26 (s) 96.6 6.25 (s) 96.7 6 6.21 (s) 94.9 6'' 5.98 (s) 96.7
7 152.8 a 152.7 a 7 155.7 d 7'' 155.3 d

8 105.5 105.7 8 108.1 e 8'' 108.2 e

8a 152.6 a 152.6 a 8a 153.2 d 8a'' 150.5 d

1' 131.3 131.1 1' 132.3 f 1''' 131.8 f

2' 7.06 (d, 2.0) 114.8 6.89 (d, 2.0) 114.7 b 2' 6.62-6.89 (m) 115.8 h 2''' 6.62-6.89 (m) 115.5 h

3' 145.5 b 144.6 c 3' 145.5 g 3''' 145.1 g

4' 145.2 b 145.2 c 4' 145.2 g 4''' 145.0 g

5' 6.79 (d, 7.9) 115.6 6.68-6.74 (m) 115.5 d 5' 6.62-6.89 (m) 115.2 h 5''' 6.62-6.89 (m) 115.2 h

6' 6.82 (dd, 2.0, 7.9) 118.7 6.68-6.74 (m) 118.9 e 6' 6.62-6.89 (m) 118.9 i 6''' 6.62-6.89 (m) 118.9 i

1'' 134.8 134.7 1'''' 135.3

2'' 6.57 (d, 2.0) 114.6 6.67 (d. 2.0) 114.9 b 2'''' 6.62-6.89 (m) 115.1 h

3'' 145.8 145.4 c 3'''' 144.8 g

4'' 144.6 145.7 c 4'''' 144.3 g

5'' 6.63 (d, 7.8) 116.0 6.68-6.74 (m) 116.0 d 5'''' 6.62-6.89 (m) 114.9 h

6'' 6.41 (dd, 2.0, 7.8) 118.7 6.51 (dd, 2.0, 7.8) 119.1 e 6'''' 6.48 (dd, 2.0, 7.8) 119.2 i

α 2.85 (dd, 2.0, 15.6) 38.0 2.87 (dd, 2.0, 15.6) 37.6 α 1.95 (dd, 6.6, 15.6) 36.9 c

3.09 (dd, 6.8, 15.6) 3.07 (dd, 6.8, 15.6) 2.58 (br d, 15.6)
β 4.56 (br d, 6.8) 34.6 4.43 (br d, 6.8) 34.5 β 4.18 (br d, 6.6) 34.3

COO 168.5 168.4 COO 169.0
CH2S- 2.80 (m) 35.4 2.81 (m) 35.5 CH2S- 2.63 (m) 34.8

2.97 (m) 2.97 (m) 2.82 (m)
CH2OH 3.76 (m) 62.7 3.79 (m) 62.7 CH2OH 3.73 (m) 62.5

3.89 (m) 3.93 (m) 3.93 (m)
a - e  Assignments may be interchanged in each compound.

1H (400 MHz) and 13C (100 MHz) NMR data for thioethers 11a, 12a and 16a in acetone-d6+D2O (δ in ppm, J  in Hz)
16a

Position
11a 12a

6 
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