141 research outputs found

    Additive (nano)manufacturing perspectives: the use of nanofillers and tailored materials

    Full text link
    Additive manufacturing (AM) is identified to cost-effectively lower manufacturing inputs and outputs in small batch production, widely employed in customized and high-value manufacturing chains, such as aerospace and medical component manufacturing. Additive manufacturing has the potential to significantly lower life cycle energy demands of products and their CO2 emissions. Moreover, AM holds promise of overturning many aspects of the economics of manufacturing, as it pays no heed to unit labour costs or traditional economies of scale. Advances in AM technology are yielding faster production times and enabling objects to be printed in multiple combinations of materials, colours and surface finishes. A significant portion of these advances lie on the development of advanced materials for AM processes, which is undeniably one of the main driving forces of the transition from Rapid Prototyping to the Direct Digital Manufacturing era. Industries are nowadays at the inflection point for AM technologies, which have moved from a much-hyped but largely unproven manufacturing processes, to a mature technological solution, with numerous competitive advantages and the ability to produce real, innovative, complex and robust products

    Innovative Data Management in advanced characterization: Implications for materials design

    Get PDF
    Abstract This paper describes a novel methodology of data documentation in materials characterization, which has as starting point the creation and usage of any Data Management Plan (DMP) for scientific data in the field of materials science and engineering, followed by the development and exploitation of ontologies for the harnessing of data created through experimental techniques. The case study that is discussed here is nanoindentation, a widely used method for the experimental assessment of mechanical properties on a small scale. The new documentation structure for characterization data (CHADA) is based on the definition of (i) sample, (ii) method, (iii) raw data and (iv) data analysis as the main component of the metadata associated to any characterization experiment. In this way, the relevant information can be stored inside the metadata associated to the experiment. The same methodology can be applicable to a large number of techniques that produce big amount of raw data, while at the same time it can be invaluable tool for big data analysis and for the creation of an open innovation environment, where data can be accessed freely and efficiently. Other fundamental aspects are reviewed in the paper, including the taxonomy and curation of data, the creation of ontology and classification of characterization techniques, the harnessing of data in open innovation environments via database construction along with the retrieval of information via algorithms. The issues of harmonization and standardization of such novel approaches are also critically discussed. Finally, the possible implications for nanomaterial design and the potential industrial impact of the new approach are described and a critical outlook is given

    Mechanical and nanomechanical properties of MWCNT/PP nanocomposite

    Get PDF
    The mechanical and nanomechanical properties of multi-walled carbon nanotube-reinforced polypropylene (MWCNT/PP) nanocomposite were investigated through tension tests (conducted on 2 wt% and 5 wt% specimens) and nanoindentation tests (conducted on 2 wt% specimens). In addition, the structural properties and topography of the nanocomposite were characterized by means of scanning electron microscopy (SEM) and Scanning Probe Microscopy (SPM), respectively. The results from the tension tests reveal an enhancement and a considerable scatter in the Young’s modulus and maximum stress of the MWCNT/PP nanocomposite for both MWCNT content. For the specimens with mechanical properties lower than the average values, the SEM and SPM images revealed poor dispersion and formation of large agglomerates. The hardness (as resistance to applied load) and Young’s modulus were mapped at 300 nm of displacement, for a grid of 70 ´ 70 μm2. Through projection, the resistance is clearly divided into 3 regions, namely the PP matrix, the interphase (region close to/between MWCNTs) and the regions of the MWCNT agglomerates. The resistance deviates from low values (few MPas) to 1.8 GPa. The present experimental study provides all necessary data for the model creation and validation of the MWCNT/PP nanocomposite

    Mechanical and nanomechanical properties of MWCNT/PP nanocomposite

    Get PDF
    The mechanical and nanomechanical properties of multi-walled carbon nanotube-reinforced polypropylene (MWCNT/PP) nanocomposite were investigated through tension tests (conducted on 2 wt% and 5 wt% specimens) and nanoindentation tests (conducted on 2 wt% specimens). In addition, the structural properties and topography of the nanocomposite were characterized by means of scanning electron microscopy (SEM) and Scanning Probe Microscopy (SPM), respectively. The results from the tension tests reveal an enhancement and a considerable scatter in the Youngs modulus and maximum stress of the MWCNT/PP nanocomposite for both MWCNT content. For the specimens with mechanical properties lower than the average values, the SEM and SPM images revealed poor dispersion and formation of large agglomerates. The hardness (as resistance to applied load) and Young蒒s modulus were mapped at 300 nm of displacement, for a grid of 70 ( 70 �m2. Through projection, the resistance is clearly divided into 3 regions, namely the PP matrix, the interphase (region close to/between MWCNTs) and the regions of the MWCNT agglomerates. The resistance deviates from low values (few MPa) to 1.8 GPa. The present experimental study provides all necessary data for the model creation and validation of the MWCNT/PP nanocomposite

    Mechanical properties, surface assessment, and structural analysis of functionalized cfrps after accelerated weathering

    Get PDF
    The present study focuses on the effect of two novel carbon fibre surface treatments, electropolymerisation of methacrylic acid and air pressure plasma, on the mechanical properties and structural integrity of carbon-fibre-reinforced composites under operational conditions. Extensive mechanical testing was applied, both in nano-and macro-scale, to assess the performance of the composites and the interphase properties after ultraviolet/humidity weathering. The results of the mechanical assessment are supported by structure, surface, and chemistry examination in order to reveal the failure mechanism of the composites. Composites with the electropolymerisation treatment exhibited an increase of 11.8% in interlaminar shear strength, while APP treatment improved the property of 23.9%, rendering both surface treatments effective in increasing the fibre-matrix adhesion. Finally, it was proven that the developed composites can withstand operational conditions in the long term, rendering them suitable for a wide variety of structural and engineering applications

    Life Cycle Assessment of Composites Additive Manufacturing Using Recycled Materials

    Get PDF
    Additive manufacturing (AM) of composite materials is promising to create customizable products with enhanced properties, utilizing materials like carbon fibers (CFs). To increase their circularity, composite recycling has been proposed to re-introduce the recovered components in AM. A careful evaluation of recycling is necessary, considering the sustainability and functionality (i.e., mechanical properties) of the recovered components. Thus, Life Cycle Assessment (LCA) is applied to estimate the environmental impacts of AM via Fused Filament Fabrication (FFF), using virgin or recycled CFs via solvolysis at a laboratory scale. This study aims to provide a detailed Life Cycle Inventory (LCI) of FFF and evaluate the sustainability of using recycled CFs in AM. For both virgin CF manufacturing and CF recycling, electricity consumption was the main contributor to environmental impacts. CF recovery via solvolysis resulted in lower impacts across most impact categories compared to AM with virgin CFs. Different scenarios were examined to account for the mechanical properties of recycled CFs. AM with 75% recycled CFs, compared to 100% virgin CFs undergoing landfilling, resulted in over 22% reduction in climate change potential, even after a 50% loss of recycled CF functionality. Overall, this study offers insights into the LCI of FFF and shows that CF recycling from composites is worth pursuing
    • …
    corecore