25 research outputs found

    In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways

    Get PDF
    Regional deposition of inhaled medicines is a valuable metric of effectiveness in drug delivery applications to the lung. In silico methods are now emerging as a valuable tool for the detailed description of localized deposition in the respiratory airways. In this context, there is a need to minimize the computational cost of high-fidelity numerical approaches. Motivated by this need, the present study is designed to assess the role of the extrathoracic airways in determining regional deposition in the upper bronchial airways. Three mouth-throat geometries, with significantly different geometric and filtering characteristics, are merged onto the same tracheobronchial tree that extends to generation 8, and Large Eddy Simulations are carried out at steady inhalation flowrates of 30 and View the MathML source. At both flowrates, large flow field differences in the extrathoracic airways across the three geometries largely die out below the main bifurcation. Importantly, localized deposition fractions are found to remain practically identical for particles with aerodynamic diameters of up to View the MathML source and View the MathML source at 30 and View the MathML source, respectively. For larger particles, differences in the localized deposition fractions are shown to be mainly due to variations in the mouth-throat filtering rather than upstream flow effects or differences in the local flow field. Deposition efficiencies in the individual airway segments exhibit strong correlations across the three geometries, for all particle sizes. The results suggest that accurate predictions of regional deposition in the tracheobronchial airways can therefore be obtained if the particle size distribution that escapes filtering in the mouth-throat (ex-cast dose) of a particular patient is known or can be estimated. These findings open the prospect for significant reductions in the computational expense, especially in the context of in silico population studies, where the aerosol size distribution and precomputed flow field from standardized mouth-throat models could be used with large numbers of tracheobronchial trees available in chest-CT databases

    The effect of mouth-throat geometry on regional deposition in the tracheobronchial tree

    Get PDF
    In silico methods offer a valuable approach to predict localized deposition in the tracheobronchial tree, important in the topical treatment of respiratory diseases and the systemic administration of drugs with limited lung bioavailability. In this study, we examine the effect of extrathoracic airway variation on regional deposition in order to assess whether standard mouth-throat models can be adopted for more efficient predictions. Despite large qualitative differences in the extrathoracic airways, deposition patterns and efficiencies in the tracheobronchial region remain largely unaffected for particles smaller than 6 microns. The findings suggest that for drug delivery applications, standard mouth-throat models could be adopted to predict deposition in the central airways

    Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge:Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    Get PDF
    AbstractUnderstanding the multitude of factors that control pulmonary deposition is important in assessing the therapeutic or toxic effects of inhaled particles. The use of increasingly sophisticated in silico models has improved our overall understanding, but model realism remains elusive. In this work, we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200kg/m3). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the tongue. Nevertheless, flow field differences due to the inlet conditions are largely smoothed out just a short distance downstream of the mouth inlet as a result of the complex geometry. Increasing the inhalation flowrate from sedentary to activity conditions left the mean flowfield structures largely unaffected. Nevertheless, at the higher flowrates turbulent intensities persisted further downstream in the main bronchi. For dp>2.5μm, the overall Deposition Fractions (DF) increased with flowrate due to greater inertial impaction in the oropharynx. Below dp=1.0μm, the DF was largely independent of particle size; it also increased with flowrate, but remained significantly lower. Electrostatic charge increased the overall DF of smaller particles by as much as sevenfold, with most of the increase located in the mouth–throat. Moreover, significant enhancement in deposition was found in the left and right lung sub-regions of our reconstructed geometry. Although there was a relatively small impact of inhalation flowrate on the deposition of charged particles for sizes dp<2.5μm, impaction prevailed over electrostatic deposition for larger particles as the flowrate was increased. Overall, we report a significant interplay between particle size, electrostatic charge, and flowrate. Our results suggest that in silico models should be customized for specific applications, ensuring all relevant physical effects are accounted for in a self-consistent fashion

    Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods

    Get PDF
    Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15 years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future

    Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods

    No full text
    © 2017 Elsevier B.V. Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15 years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future

    Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods

    Get PDF
    Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15 years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future.This article is based upon work from COST Action MP1404 SimInhale ‘Simulation and pharmaceutical technologies for advanced patient-tailored inhaled medicines', supported by COST (European Cooperation in Science and Technology) www.cost.eu. The work conducted at Brno University of Technology was partly supported by the Czech Science Foundation [16-23675S].Peer Reviewe

    Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods

    No full text
    Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15 years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future.This article is based upon work from COST Action MP1404 SimInhale ‘Simulation and pharmaceutical technologies for advanced patient-tailored inhaled medicines', supported by COST (European Cooperation in Science and Technology) www.cost.eu. The work conducted at Brno University of Technology was partly supported by the Czech Science Foundation [16-23675S].Peer Reviewe
    corecore