12 research outputs found

    Plaque composition as a predictor of plaque ulceration in carotid artery atherosclerosis: The plaque at RISK study

    Get PDF
    BACKGROUND AND PURPOSE: Plaque ulceration is a marker of previous plaque rupture. We studied the association between atherosclerotic plaque composition at baseline and plaque ulceration at baseline and follow-up. MATERIALS AND METHODS: We included symptomatic patients with a carotid stenosis of ,70% who underwent MDCTA and MR imaging at baseline (n=180). MDCTA was repeated at 2 years (n=73). We assessed the presence of ulceration using MDCTA. Baseline MR imaging was used to assess the vessel wall volume and the presence and volume of plaque components (intraplaque hemorrhage, lipid-rich necrotic core, and calcifications) and the fibrous cap status. Associations at baseline were evaluated with binary logistic regression and reported with an OR and its 95% CI. Simple statistical testing was performed in the follow-up analysis. RESULTS: At baseline, the prevalence of plaque ulceration was 27% (49/180). Increased wall volume (OR = 12.1; 95% CI, 3.5-42.0), higher relative lipid-rich necrotic core (OR= 1.7; 95% CI, 1.3-2.2), higher relative intraplaque hemorrhage volume (OR= 1.7; 95% CI, 1.3-2.2), and a thin-or-ruptured fibrous cap (OR = 3.4; 95% CI, 1.7-6.7) were associated with the presence of ulcerations at baseline. In 8% (6/73) of the patients, a new ulcer developed. Plaques with a new ulceration at follow-up had at baseline a larger wall volume (1.04 cm3 [IQR, 0.97-1.16 cm3] versus 0.86 cm3 [IQR, 0.73-1.00 cm3]; P=.029), a larger relative lipid-rich necrotic core volume (23% [IQR, 13-31%] versus 2% [IQR, 0-14%]; P=.002), and a larger relative intraplaque hemorrhage volume (14% [IQR, 8-24%] versus 0% [IQR, 0-5%]; P<.001). CONCLUSIONS: Large atherosclerotic plaques and plaques with intraplaque hemorrhage and lipid-rich necrotic cores were associated with plaque ulcerations at baseline and follow-up

    The Meta VCI Map consortium for meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping: design and multicenter pilot study

    Get PDF
    Introduction: The Meta VCI Map consortium performs meta-analyses on strategic lesion locations for vascular cognitive impairment using lesion-symptom mapping. Integration of data from different cohorts will increase sample sizes, to improve brain lesion coverage and support comprehensive lesion-symptom mapping studies. Methods: Cohorts with available imaging on white matter hyperintensities or infarcts and cognitive testing were invited. We performed a pilot study to test the feasibility of multicenter data processing and analysis and determine the benefits to lesion coverage. Results: Forty-seven groups have joined Meta VCI Map (stroke n = 7800 patients; memory clinic n = 4900; population-based n = 14,400). The pilot study (six ischemic stroke cohorts, n = 878) demonstrated feasibility of multicenter data integration (computed tomography/magnetic resonance imaging) and achieved marked improvement of lesion coverage. Discussion: Meta VCI Map will provide new insights into the relevance of vascular lesion location for cognitive dysfunction. After the successful pilot study, further projects are being prepared. Other investigators are welcome to join

    Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study

    Get PDF
    ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3 7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6 7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype

    Genome-wide analysis of genetic loci associated with Alzheimer disease

    No full text
    Context: Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD). Objectives: To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35 000 persons (8371 AD cases). Design, Setting, and Participants: In stage 1, we identified strong genetic associations (P<10-3) in a sample of 3006 AD cases and 14 642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P<10-3. In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P<10-5. In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P<1.7 × 10-8. These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009. Main Outcome Measure: Presence of Alzheimer disease. Results: Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P=1.59×10-11) and rs597668 near EXOC3L2/BLOC1S3/ MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P=6.45×10-9). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P<.05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study). Conclusions: Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research

    Stroke genetics informs drug discovery and risk prediction across ancestries

    No full text
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.Paroxysmal Cerebral Disorder
    corecore