106 research outputs found

    Penetration of Non-energetic Hydrogen Atoms into Amorphous Solid Water and their Reaction with Embedded Benzene and Naphthalene

    Full text link
    Chemical processes on the surface of icy grains play an important role in the chemical evolution in molecular clouds. In particular, reactions involving non-energetic hydrogen atoms accreted from the gaseous phase have been extensively studied. These reactions are believed to effectively proceed only on the surface of the icy grains; thus, molecules embedded in the ice mantle are not considered to react with hydrogen atoms. Recently, Tsuge et al. (2020) suggested that non-energetic hydrogen atoms can react with CO molecules even in ice mantles via diffusive hydrogenation. This investigation was extended to benzene and naphthalene molecules embedded in amorphous solid water (ASW) in the present study, which revealed that a portion of these molecules could be fully hydrogenated in astrophysical environments. The penetration depths of non-energetic hydrogen atoms into porous and non-porous ASW were determined using benzene molecules to be >50 and ~10 monolayers, respectively (1 monolayer ~ 0.3 nm).Comment: 30 pages, 4 figures, 1 table; accepted for publication by Ap

    A new measurement of thermal conductivity of amorphous ice and its implications for the thermal evolution of comets

    Get PDF
    Very slowly deposited amorphous ice has a thermal conductivity about four orders of magnitude or more smaller than hitherto estimated. Using the exceedingly low value of the thermal conductivity of comets deduced from the properties of amorphous ice leads to the expectation that internal heating of comets is negligible below the outer several tens of centimeters

    Diffusive hydrogenation reactions of CO embedded in amorphous solid water at elevated temperatures ~70 K

    Get PDF
    The surface processes on interstellar dust grains have an important role in the chemical evolution in molecular clouds. Hydrogenation reactions on ice surfaces have been extensively investigated and are known to proceed at low temperatures mostly below 20 K. In contrast, information about the chemical processes of molecules within an ice mantle is lacking. In this work, we investigated diffusive hydrogenation reactions of carbon monoxide (CO) embedded in amorphous solid water (ASW) as a model case and discovered that the hydrogenation of CO efficiently proceeds to yield H2CO and CH3OH even above 20 K when CO is buried beneath ASW. The experimental results suggest that hydrogen atoms diffuse through the cracks of ASW and have a sufficient residence time to react with embedded CO. The hydrogenation reactions occurred even at temperatures up to ~70 K. Cracks collapse at elevated temperatures but the occurrence of hydrogenation reactions means that the cracks would not completely disappear and remain large enough for penetration by hydrogen atoms. Considering the hydrogen-atom fluence in the laboratory and molecular clouds, we suggest that the penetration of hydrogen and its reactions within the ice mantle occur in astrophysical environments. Unified Astronom

    Interactions of Atomic and Molecular Hydrogen with a Diamond-like Carbon Surface: H2 Formation and Desorption

    Get PDF
    The interactions of atomic and molecular hydrogen with bare interstellar dust grain surfaces are important for understanding H2 formation at relatively high temperatures (>20 K). We investigate the diffusion of physisorbed H atoms and the desorption energetics of H2 molecules on an amorphous diamond-like carbon (DLC) surface. From temperature-programmed desorption experiments with a resonance-enhanced multiphoton ionization (REMPI) method for H2 detection, the H2 coverage-dependent activation energies for H2 desorption are determined. The activation energies decrease with increasing H2 coverage and are centered at 30 meV with a narrow distribution. Using a combination of photostimulated desorption and REMPI methods, the time variations of the surface number density of H2 following atomic and molecular hydrogen depositions are studied. From these measurements, we show that H2 formation on a DLC surface is quite efficient, even at 20 K. A significant kinetic isotope effect for H2 and D2 recombination reactions suggests that H-atom diffusion on a DLC surface is mediated by quantum mechanical tunneling. In astrophysically relevant conditions, H2 recombination due to physisorbed H-atoms is unlikely to occur at 20 K, suggesting that chemisorbed H atoms might play a role in H2 formation at relatively high temperatures.Comment: 33 pages, 8 figures, Accepted for publication in Ap

    Diffusion activation energy and desorption activation energy for astrochemically relevant species on water ice show no clear relation

    Full text link
    The activation energy for desorption (Edes) and that for surface diffusion (Esd) of adsorbed molecules on dust grains are two of the most important parameters for the chemistry in the interstellar medium. Although Edes is often measured by laboratory experiments, the measurement of Esd is sparse. Due to the lack of data, astrochemical models usually assume a simple scaling relation, Esd = fEdes, where f is a constant, irrespective of adsorbed species. Here, we experimentally measure Esd for CH4, H2S, OCS, CH3OH, and CH3CN on water-ice surfaces using an ultra-high-vacuum transmission electron microscope (UHV-TEM). Compiling the measured Esd values and Edes values from the literature, we find that the value of f ranges from ~0.2 to ~0.7, depending on the species. Unless f (or Esd) for the majority of species is available, a natural alternative approach for astrochemical models is running multiple simulations, varying f for each species randomly. In this approach, ranges of molecular abundances predicted by multiple simulations, rather than abundances predicted by each simulation, are important. We here run 10,000 simulations of astrochemical models of molecular clouds and protostellar envelopes, randomly assigning a value of f for each species. In the former case, we identify several key species whose Esd most strongly affects the uncertainties of the model predictions; Esd for those species should be investigated in future laboratory and quantum chemical studies. In the latter case, uncertainties in the Esd of many species contribute to the uncertainties in the model predictions.Comment: Accepted for publication in ApJ

    FORMATION OF CARBONIC ACID (H2CO3) BY SURFACE REACTIONS OF NON-ENERGETIC OH RADICALS WITH CO MOLECULES AT LOW TEMPERATURES

    Get PDF
    We present the experimental results of carbonic acid (H2CO3) formation through surface reactions of CO molecules with non-energetic hydroxyl (OH) radicals at 10-40 K. The formation of H2CO3 was clearly identified both in the IR spectra and in the thermally programmed desorption mass spectra. The H2CO3 yield was rather high, amounting to approximately 40%-70% relative to that of CO2 formed by the reaction of CO with OH. The structure of H2CO3 formed by reactions of CO with OH may differ from that formed by energetic processes such as UV irradiation, ion irradiation, and electron irradiation of H2O/CO2 binary ices. In this paper, we envisage some of the possible roles H2CO3 may have in the interstellar medium, such as enriching grain mantles of new molecules via acid-base reactions with basic species and contributing to the formation of the unidentified band at 6.8 μm; we suggest possible reasons for its non-detection yet and discuss the restoration of carbonic acid molecules in the gas phase

    EXPERIMENTAL STUDY OF CO 2 FORMATION BY SURFACE REACTIONS OF NON-ENERGETIC OH RADICALS WITH CO MOLECULES

    Get PDF
    Surface reactions between carbon monoxide and non-energetic hydroxyl radicals were carried out at 10 K and 20 K in order to investigate possible reaction pathways to yield carbon dioxide in dense molecular clouds. Hydroxyl radicals, produced by dissociating water molecules in microwave-induced plasma, were cooled down to 100 K prior to the introduction of CO. The abundances of species were monitored in situ using a Fourier transform infrared spectrometer. Formation of CO2 was clearly observed, even at 10 K, suggesting that reactions of CO with OH proceed with little or no activation barrier. The present results indicate that CO2 formation, due to reactions between CO and OH, occurs in tandem with H2O formation, and this may lead to the formation of CO2 ice in polar environments, as typically observed in molecular clouds

    H-D Substitution in Interstellar Solid Methanol: A Key Route for D Enrichment

    Full text link
    Deuterium enrichment of interstellar methanol is reproduced experimentally for the first time via grain-surface H-D substitution in solid methanol at an atomic D/H ratio of 0.1. Although previous gas-grain models successfully reproduce the deuterium enrichments observed in interstellar methanol molecules (D/H of up to 0.4, compared to the cosmic ratio of 105)\sim 10^{-5}), the models exclusively focus on deuterium fractionation resulting from the successive addition of atomic hydrogen/deuterium on CO. The mechanism proposed here represents a key route for deuterium enrichment that reproduces the high observed abundances of deuterated methanol, including multiple deuterations.Comment: 4 pages, 4 figures, Accepted to the ApJ
    corecore