43 research outputs found

    Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens

    Get PDF
    Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders

    Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo

    Get PDF
    Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic β-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic β-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand

    Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood–brain barrier in leptin resistant mice

    Get PDF
    Objective: The inability of leptin to suppress food intake in diet-induced obesity, sometimes referred to as leptin resistance, is associated with several distinct pathological hallmarks. One prevailing theory is that impaired transport of leptin across the blood–brain barrier (BBB) represents a molecular mechanism that triggers this phenomenon. Recent evidence, however, has challenged this notion, suggesting that leptin BBB transport is acquired during leptin resistance. Methods: To resolve this debate, we utilized a novel cerebral Open Flow Microperfusion (cOFM) method to examine leptin BBB transport in male C57BL/6J mice, fed a chow diet or high fat diet (HFD) for 20 days. Results: Basal plasma leptin levels were 3.8-fold higher in HFD-fed mice (p < 0.05). Leptin administration (2.5 mg/kg) elicited similar pharmacokinetic profiles of circulating leptin. However, while leptin reduced food intake by 20% over 22 h in chow-fed mice, it did not affect food intake in HFD-fed mice. In spite of this striking functional difference, hypothalamic leptin levels, as measured by cOFM, did not differ between chow-fed mice and HFD-fed mice following leptin administration. Conclusions: These data suggest that leptin transport across the BBB is not impaired in non-obese leptin resistant mice and thus unlikely to play a direct role in the progression of pharmacological leptin resistance. Keywords: Obesity, Hypothalamus, Leptin, Leptin resistance, Blood–brain barrier, Leptin transpor

    Resveratrol-Induced Signal Transduction in Wound Healing

    No full text
    Resveratrol is a well-known polyphenol that harbors various health benefits. Besides its well-known anti-oxidative potential, resveratrol exerts anti-inflammatory, pro-angiogenic, and cell-protective effects. It seems to be a promising adjuvant for various medical indications, such as cancer, vascular, and neurodegenerative diseases. Additionally, resveratrol was shown to display beneficial effects on the human skin. The polyphenol is discussed to be a feasible treatment approach to accelerate wound healing and prevent the development of chronic wounds without the drawback of systemic side effects. Despite resveratrol&rsquo;s increasing popularity, its molecular mechanisms of action are still poorly understood. To take full advantage of resveratrol&rsquo;s therapeutic potential, a profound knowledge of its interactions with its targets is needed. Therefore, this review highlights the resveratrol-induced molecular pathways with particular focus on the most relevant variables in wound healing, namely inflammation, oxidative stress, autophagy, collagen proliferation and angiogenesis

    Verbrennungsmodelle in der präklinischen Forschung

    No full text

    Systematic in vivo evaluation of the time-dependent inflammatory response to steel and Teflon insulin infusion catheters

    Get PDF
    Abstract Continuous subcutaneous insulin infusion (CSII) catheters are considered the weak link of insulin pump therapy. Wear-time considerably varies between patients and the choice of catheter material is based on personal preferences rather than scientific facts. Therefore, we systematically assessed and quantified the inflammatory tissue response to steel versus Teflon CSII catheters over a maximum wear-time of 7 days in swine. Tissue surrounding catheters was analysed using histopathology and quantitative real-time PCR. The area of inflammation increased significantly over time independent of material which was confirmed by an increase in CD68 expression and an increase in mononuclear and neutrophil cell infiltrate around the catheters. We observed substantially higher fibrin deposition (p < 0.05) around steel on day 4 of wear-time. IL-6 gene expression increased within 24 hours after insertion, returned to normal levels around Teflon (p < 0.05) but remained high around steel (p < 0.05). IL-10 and TGF-β levels did not resolve over time, indicating impaired wound healing. In conclusion, there was a major temporal effect in the acute inflammatory response to CSII catheters but we found little difference between materials. This study setup presents a robust tool for the systematic analysis of the tissue response to CSII catheters
    corecore