117 research outputs found

    Single Cell Analysis of Lymph Node Tissue from HIV-1 Infected Patients Reveals that the Majority of CD4<sup>+</sup> T-cells Contain One HIV-1 DNA Molecule

    Get PDF
    Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naΓ―ve CD4+ T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naΓ―ve CD4+ T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection

    Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics

    Get PDF
    The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed β€œtrained immunity.” An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vaccines arrive. The broad protection induced by LAVs would not be compromised by potential antigenic drift (immune escape) that can render viruses resistant to specific vaccines. LAVs might offer an essential tool to β€œbend the pandemic curve,” averting the exhaustion of public health resources and preventing needless deaths and may also have therapeutic benefits if used for postexposure prophylaxis of disease

    One vaccine to counter many diseases? Modeling the economics of oral polio vaccine against child mortality and COVID-19

    Get PDF
    INTRODUCTION: Recent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines\u27 pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19. MATERIALS AND METHODS: We studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty. RESULTS: For child mortality, headline cost-effectiveness was 650perchilddeathaverted.ForCOVIDβˆ’19,assumingOPVhad20650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was 23,000-65,000 if it were administered simultaneously with a COVID-19 vaccine \u3c200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600-6100. Estimated benefit-to-cost ratios vary but are consistently high. DISCUSSION: Economic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays. FUNDING: The contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting

    The CD85j+ NK Cell Subset Potently Controls HIV-1 Replication in Autologous Dendritic Cells

    Get PDF
    Natural killer (NK) cells and dendritic cells (DC) are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC) modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j+ NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85jβˆ’ NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j+ NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j+ NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules) preferentially expressed on HIV-1-infected MDDC

    Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates

    Get PDF
    Natural killer (NK) cells play a central role in host defense against various pathogens. Functional defects of NK cells in HIV-1 infection as a direct effect of abnormal expression or function of inhibitory NK receptors (iNKRs), activating natural cytotoxicity receptors (NCRs), and NKG2D have not yet been described. This study demonstrates an expansion of the functionally defective CD56-/CD16+ population of NK cells in viremic versus aviremic patients. We also demonstrate that in HIV-infected viremic patients, expression of iNKRs was well conserved and that in most cases, there was a trend toward increased expression on NK cells as compared with healthy donors. It was also demonstrated that the major activating NK receptors, with the exception of NKG2D, were significantly down-regulated. In contrast, the expression of iNKRs and activating receptors in HIV-infected individuals whose viremia was suppressed to below detectable levels by highly active antiretroviral therapy for 2 years or longer was comparable to that of healthy donors. Functional tests confirmed that the abnormal expression of the activating receptors and of iNKRs was associated with a markedly impaired NK cytolytic function. This phenomenon is not attributed to a direct HIV-1 infection of NK cells; thus, this study may provide insight into the mechanisms of impaired host defenses in HIV-1 viremic patients

    Decreased Survival of B Cells of HIV-viremic Patients Mediated by Altered Expression of Receptors of the TNF Superfamily

    Get PDF
    Human immunodeficiency virus (HIV) infection leads to numerous perturbations of B cells through mechanisms that remain elusive. We performed DNA microarray, phenotypic, and functional analyses in an effort to elucidate mechanisms of B cell perturbation associated with ongoing HIV replication. 42 genes were up-regulated in B cells of HIV-viremic patients when compared with HIV-aviremic and HIV-negative patients, the majority of which were interferon (IFN)-stimulated or associated with terminal differentiation. Flow cytometry confirmed these increases and indicated that CD21low B cells, enhanced in HIV-viremic patients, were largely responsible for the changes. Increased expression of the tumor necrosis factor (TNF) superfamily (TNFSF) receptor CD95 correlated with increased susceptibility to CD95-mediated apoptosis of CD21low B cells, which, in turn, correlated with HIV plasma viremia. Increased expression of BCMA, a weak TNFSF receptor for B lymphocyte stimulator (BLyS), on CD21low B cells was associated with a concomitant reduction in the expression of the more potent BLyS receptor, BAFF-R, that resulted in reduced BLyS binding and BLyS-mediated survival. These findings demonstrate that altered expression of genes associated with IFN stimulation and terminal differentiation in B cells of HIV-viremic patients lead to an increased propensity to cell death, which may have substantial deleterious effects on B cell responsiveness to antigenic stimulation

    Loss of NK Stimulatory Capacity by Plasmacytoid and Monocyte-Derived DC but Not Myeloid DC in HIV-1 Infected Patients

    Get PDF
    Dendritic cells (DC) are potent inducers of natural killer (NK) cells. There are two distinct populations in blood, myeloid (mDC) and plasmacytoid (pDC) but they can also be generated In vitro from monocytes (mdDC). Although it is established that blood DC are lost in HIV-1 infection, the full impact of HIV-1 infection on DC-NK cell interactions remains elusive. We thus investigated the ability of pDC, mDC, and mdDC from viremic and anti-retroviral therapy-treated aviremic HIV-1+ patients to stimulate various NK cell functions. Stimulated pDC and mdDC from HIV-1+ patients showed reduced secretion of IFN-Ξ± and IL-12p70 respectively and their capacity to stimulate expression of CD25 and CD69, and IFN-Ξ³ secretion in NK cells was also reduced. pDC activation of NK cell degranulation in response to a tumour cell line was severely reduced in HIV-1+ patients but the ability of mDC to activate NK cells was not affected by HIV-1 infection, with the exception of HLA-DR induction. No differences were observed between viremic and aviremic patients indicating that anti-retroviral therapy had minimal effect on restoration on pDC and mdDC-mediated activation of NK cells. Results from this study provide further insight into HIV-1 mediated suppression of innate immune functions

    Changes in Natural Killer Cell Activation and Function during Primary HIV-1 Infection

    Get PDF
    Background: Recent reports suggest that Natural Killer (NK) cells may modulate pathogenesis of primary HIV-1 infection. However, HIV dysregulates NK-cell responses. We dissected this bi-directional relationship to understand how HIV impacts NK-cell responses during primary HIV-1 infection. Methodology/Principal Findings: Paired samples from 41 high-risk, initially HIV-uninfected CAPRISA004 participants were analysed prior to HIV acquisition, and during viraemic primary HIV-1 infection. At the time of sampling post-infection five women were seronegative, 11 women were serodiscordant, and 25 women were seropositive by HIV-1 rapid immunoassay. Flow cytometry was used to measure NK and T-cell activation, NK-cell receptor expression, cytotoxic and cytokine-secretory functions, and trafficking marker expression (CCR7, Ξ±4_4Ξ²7_7). Non-parametric statistical tests were used. Both NK cells and T-cells were significantly activated following HIV acquisition (p = 0.03 and p<0.0001, respectively), but correlation between NK-cell and T-cell activation was uncoupled following infection (pre-infection r = 0.68;p<0.0001; post-infection, during primary infection r = 0.074;p = 0.09). Nonetheless, during primary infection NK-cell and T-cell activation correlated with HIV viral load (r = 0.32'p = 0.04 and r = 0.35;p = 0.02, respectively). The frequency of Killer Immunoglobulin-like Receptor-expressing (KIRpos_{pos}) NK cells increased following HIV acquisition (p = 0.006), and KIRpos_{pos} NK cells were less activated than KIRneg_{neg} NK cells amongst individuals sampled while seronegative or serodiscordant (p = 0.001;p<0.0001 respectively). During HIV-1 infection, cytotoxic NK cell responses evaluated after IL-2 stimulation alone, or after co-culture with 721 cells, were impaired (p = 0.006 and p = 0.002, respectively). However, NK-cell IFN-y secretory function was not significantly altered. The frequency of CCR7+ NK cells was elevated during primary infection, particularly at early time-points (p<0.0001). Conclusions/Significance: Analyses of immune cells before and after HIV infection revealed an increase in both NK-cell activation and KIR expression, but reduced cytotoxicity during acute infection. The increase in frequency of NK cells able to traffic to lymph nodes following HIV infection suggests that these cells may play a role in events in secondary lymphoid tissue
    • …
    corecore