3,940 research outputs found

    Low-lying excitations and magnetization process of coupled tetrahedral systems

    Full text link
    We investigate low-lying singlet and triplet excitations and the magnetization process of quasi-1D spin systems composed of tetrahedral spin clusters. For a class of such models, we found various exact low-lying excitations; some of them are responsible for the first-order transition between two different ground states formed by local singlets. Moreover, we find that there are two different kinds of magnetization plateaus which are separated by a first-order transition.Comment: To appear in Phys.Rev.B (Issue 01 August 2002). A short comment is adde

    Gamma-radiation with E gamma 5 MeV detected from Seyfert galaxy 3C120 and region with 1" = 190 deg and b" = 20 deg

    Get PDF
    The observation of the Galaxy anticenter region in gamma-rays with E gamma = 5 / 100 MeV was made by gamma-telescope Natalya-1 in a balloon flight. The flight was performed at the ceiling 5.1 + or - 0.1 g/sq cm, magnetic cutoff being 17 GV. The description of the instrument and the analysis of the experiment conditions are given. The tracks of electron-positron pairs generated by gamma-quanta in the convertors were detected by wire spark chambers. The recorded events were classified manually by an operator using a graphic display into three classes: pairs, single and bad events. The arrival angle of gamma-quanta and their energy for selected gamma-ray events (pairs and singles) were determined through multiple scattering of pair components in the convertors. On the basis of the data obtained the celestial maps were made in gamma-rays for E sub gamma 5 MeV and E gamma 20 MeV energy ranges

    Application of bent crystals at IHEP 70-GeV accelerator to enhance the efficiency of its usage

    Get PDF
    Bent crystal was extracting 70-GeV protons with average intensity 4*10^11 (as measured in external beamline) per spill of 1.6 s duration, in parallel to the simultaneous work of two internal targets in the accelerator ring. An additional crystal, placed in the external beamline, was deflecting a small part of the extracted beam with intensity 10^7 protons toward another physics experiment. Crystal-extracted beam had a typical size of 4 mm by 4 mm fwhm at the end of the external beamline. Measurements for the extraction efficiency and other characteristics at the simultaneous work of four experimental set-ups are presented. With crystal working in the above-said regime during one month, no degradation of channeling was observed. The studies of extraction efficiency have been continued with new crystals.Comment: 6pp. Presented at EPAC 200

    Collective Singlet Excitations and Evolution of Raman Spectral Weights in the 2D Spin Dimer Compound SrCu2(BO3)2

    Full text link
    We present a Raman light scattering study of the two-dimensional quantum spin system SrCu2(BO3)2 and show that the magnetic excitation spectrum has a rich structure, including several well-defined bound state modes at low temperature, and a scattering continuum and quasielastic light scattering contributions at high temperature. The key to the understanding of the unique features of SrCu2(BO3)2 is the presence of strong interactions between well-localized triplet excitations in the network of orthogonal spin dimers realized in this compound. Based on our analysis of the Heisenberg model relevant for this material, we argue that the collective excitations involving two and three-particle singlet bound states have large binding energies and are observed as well-defined peaks in the Raman spectrum.Comment: 5 pages, 2 figures. Revised version, to appear in Phys. Rev. Lett. (2000

    The Investigations Of Beam Extraction And Collimation At U-70 Proton Synchrotron Of IHEP By Using Short Silicon Crystals

    Full text link
    The new results of using short (2-4mm) bent crystals for extraction and collimation of proton beam at IHEP 70 Gev proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up. The efficiency of extraction more than 85% and intensity more than 10E12 were obtained by using crystal with the length 2-mm and the angle 1 mrad. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp.Comment: Presented at EPAC 2002 (Paris, June 3-7), 3p

    Excitation spectrum of the S=1/2 quantum spin ladder with frustration: elementary quasiparticles and many-particle bound states

    Full text link
    We study the excitation spectrum of the two-chain S=1/2 Heisenberg spin ladder with additional inter-chain second-neighbor frustrating interactions. The one and two-particle excitations are analyzed by using a mapping of the model onto a Bose gas of hard-core triplets. We find that low-lying singlet and triplet two-particle bound states are present and their binding energy increases with increasing frustration. In addition, many-particle bound states are found by a combination of variational and exact diagonalization techniques. We prove that the larger the number of bound quasiparticles the larger the binding energy. Thus the excitation spectrum has a complex structure and consists of elementary triplets and collective many-particle singlet and triplet excitations which generally mix with the elementary ones. The model exhibits a quantum phase transition from an antiferromagnetic ladder phase (small frustration) into Haldane phase (effectively ferromagnetic ladder for large frustration). We argue that near the transition point the spectrum in both triplet and singlet channels becomes gapless. The excitation wave function is dominated by large-size bound states which leads to the vanishing of the quasiparticle residue.Comment: RevTeX, 23 pages, 12 figure

    RT-2 Detection of Quasi-Periodic Pulsations in the 2009 July 5 Solar Hard X-ray Flare

    Full text link
    We present the results of an analysis of hard X-ray observations of the C2.7 solar flare detected by the RT-2 Experiment onboard the Coronas - Photon satellite. We detect hard X-ray pulsations at periods of ~12 s and ~15 s. We find a marginal evidence for a decrease in period with time. We have augmented these results using the publicly available data from the RHESSI satellite. We present a spectral analysis and measure the spectral parameters.Comment: 12 pages, 8 figures and 3 tables, accepted for publication in The Astrophysical Journa

    A systems model of phosphorylation for inflammatory signaling events

    Get PDF
    © 2014 Sadreev et al. Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multisite phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits

    Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene

    Full text link
    The remarkable electronic properties of graphene have fueled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor its electronic properties and to control its charge carriers. Here we show that a single atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunneling microscope (STM). The response of the conduction electrons in graphene to the local charge is monitored with scanning tunneling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime 6-11 where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states (DOS) within a disc centered on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary information. Nature Physics advance online publication, Feb 22 (2016
    • …
    corecore