5,663 research outputs found

    Observation of deconfinement in a cold dense quark medium

    Full text link
    In this paper we study the confinement/deconfinement transition in lattice SU(2)SU(2) QCD at finite quark density and zero temperature. The simulations are performed on an 32432^4 lattice with rooted staggered fermions at a lattice spacing a=0.044 fma = 0.044 \mathrm{~fm}. This small lattice spacing allowed us to reach very large baryon density (up to quark chemical potential μq>2000 MeV\mu_q > 2000 \mathrm{~MeV}) avoiding strong lattice artifacts. In the region μq1000 MeV\mu_q\sim 1000 \mathrm{~MeV} we observe for the first time the confinement/deconfinement transition which manifests itself in rising of the Polyakov loop and vanishing of the string tension σ\sigma. After the deconfinement is achieved at μq>1000 MeV\mu_q > 1000 \mathrm{~MeV}, we observe a monotonous decrease of the spatial string tension σs\sigma_s which ends up with σs\sigma_s vanishing at μq>2000 MeV\mu_q > 2000 \mathrm{~MeV}. From this observation we draw the conclusion that the confinement/deconfinement transition at finite density and zero temperature is quite different from that at finite temperature and zero density. Our results indicate that in very dense matter the quark-gluon plasma is in essence a weakly interacting gas of quarks and gluons without a magnetic screening mass in the system, sharply different from a quark-gluon plasma at large temperature.Comment: 6 pages, 4 figure

    Electron-Electron Interactions in the Vacuum Polarization of Graphene

    Full text link
    We discuss the effect of electron-electron interactions on the static polarization properties of graphene beyond RPA. Divergent self-energy corrections are naturally absorbed into the renormalized coupling constant α\alpha. We find that the lowest order vertex correction, which is the first non-trivial correlation contribution, is finite, and about 30% of the RPA result at strong coupling α1\alpha \sim 1. The vertex correction leads to further reduction of the effective charge. Finite contributions to dielectric screening are expected in all orders of perturbation theory.Comment: 5 pages, 2 figures; published versio

    Bound states of magnons in the S=1/2 quantum spin ladder

    Full text link
    We study the excitation spectrum of the two-leg antiferromagnetic S=1/2 Heisenberg ladder. Our approach is based on the description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. We find singlet (S=0) and triplet (S=1) two-particle bound states of the elementary triplets. We argue that bound states generally exist in any dimerized quantum spin model.Comment: 4 REVTeX pages, 4 Postscript figure

    Studies and application of bent crystals for beam steering at 70-GeV IHEP accelerator

    Full text link
    This report overviews studies accomplished in the U70 proton synchrotron of IHEP-Protvino during the recent two decades. Major attention is paid to a routine application of bent crystals for beam extraction from the machine. It has been confirmed experimentally that efficiency of beam extraction with a crystal deflector of around 85% is well feasible for a proton beam with intensity up to 1012 protons per cycle. Another trend is to use bent crystals for halo collimation in a high energy collider. New promising options emerge for, say, LHC and ILC based on the "volume reflection" effect, which has been discovered recently in machine study runs at U70 of IHEP (50 GeV) and SPS of CERN (400 GeV).Comment: 12 pages, 14 figure

    2d Gauge Theories and Generalized Geometry

    Get PDF
    We show that in the context of two-dimensional sigma models minimal coupling of an ordinary rigid symmetry Lie algebra g\mathfrak{g} leads naturally to the appearance of the "generalized tangent bundle" TMTMTM\mathbb{T}M \equiv TM \oplus T^*M by means of composite fields. Gauge transformations of the composite fields follow the Courant bracket, closing upon the choice of a Dirac structure DTMD \subset \mathbb{T}M (or, more generally, the choide of a "small Dirac-Rinehart sheaf" D\cal{D}), in which the fields as well as the symmetry parameters are to take values. In these new variables, the gauge theory takes the form of a (non-topological) Dirac sigma model, which is applicable in a more general context and proves to be universal in two space-time dimensions: A gauging of g\mathfrak{g} of a standard sigma model with Wess-Zumino term exists, \emph{iff} there is a prolongation of the rigid symmetry to a Lie algebroid morphism from the action Lie algebroid M×gMM \times \mathfrak{g}\to M into DMD\to M (or the algebraic analogue of the morphism in the case of D\cal{D}). The gauged sigma model results from a pullback by this morphism from the Dirac sigma model, which proves to be universal in two-spacetime dimensions in this sense.Comment: 22 pages, 2 figures; To appear in Journal of High Energy Physic

    Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions

    Full text link
    The Heisenberg nearest neighbour antiferromagnet on the pyrochlore (3D) lattice is highly frustrated and does not order at low temperature where spin-spin correlations remain short ranged. Dzyaloshinsky-Moriya interactions (DMI) may be present in pyrochlore compounds as is shown, and the consequences of such interactions on the magnetic properties are investigated through mean field approximation and monte carlo simulations. It is found that DMI (if present) tremendously change the low temperature behaviour of the system. At a temperature of the order of the DMI a phase transition to a long range ordered state takes place. The ordered magnetic structures are explicited for the different possible DMI which are introduced on the basis of symmetry arguments. The relevance of such a scenario for pyrochlore compounds in which an ordered magnetic structure is observed experimentally is dicussed

    Theoretical Aspects of the Fractional Quantum Hall Effect in Graphene

    Full text link
    We review the theoretical basis and understanding of electronic interactions in graphene Landau levels, in the limit of strong correlations. This limit occurs when inter-Landau-level excitations may be omitted because they belong to a high-energy sector, whereas the low-energy excitations only involve the same level, such that the kinetic energy (of the Landau level) is an unimportant constant. Two prominent effects emerge in this limit of strong electronic correlations: generalised quantum Hall ferromagnetic states that profit from the approximate four-fold spin-valley degeneracy of graphene's Landau levels and the fractional quantum Hall effect. Here, we discuss these effects in the framework of an SU(4)-symmetric theory, in comparison with available experimental observations.Comment: 12 pages, 3 figures; review for the proceedings of the Nobel Symposium on Graphene and Quantum Matte

    Spectrum of elementary and collective excitations in the dimerized S=1/2 Heisenberg chain with frustration

    Full text link
    We have studied the low-energy excitation spectrum of a dimerized and frustrated antiferromagnetic Heisenberg chain. We use an analytic approach, based on a description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. Additional singlet (S=0) and triplet (S=1) modes are found as two-particle bound states of the elementary triplets. We have also calculated the contributions of the elementary and collective excitations into the spin structure factor. Our results are in excellent agreement with exact diagonalizations and dimer series expansions data as long as the dimerization parameter δ\delta is not too small (δ>0.1\delta>0.1), i.e. while the elementary triplets can be treated as localized objects.Comment: 18 pages, 13 figure
    corecore