195 research outputs found

    Basis for Calculating Cross Sections for Nuclear Magnetic Resonance Spin-Modulated Polarized Neutron Scattering

    Get PDF
    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure

    Paracrystal model of the high-temperature lamellar phase of a ternary microemulsion system

    Full text link

    A corresponding states approach to Small-Angle-Scattering for polydisperse ionic colloidal fluids

    Full text link
    Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding states approach. This assumes that all pair correlation functions gαβ(r)g_{\alpha \beta}(r) of a polydisperse fluid are conformal to those of an appropriate monodisperse binary fluid (reference system) and can be generated from them by scaling transformations. The correspondence law extends to ionic fluids a {\it scaling approximation} (SA) successfully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by solving the Orstein-Zernike (OZ) integral equations coupled with an approximate closure. The SA is first tested within the mean spherical approximation (MSA) closure, which allows analytical solutions. The results are found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown to be an improvement over the ``decoupling approximation'' extended to the ionic case. The simplicity of the SA scheme allows its application also when the OZ equations can be solved only numerically. An example is then given by using the hypernetted chain (HNC) closure. Shortcomings of the SA approach, its possible use in the analysis of experimental scattering data and other related points are also briefly addressed.Comment: 29 pages, 7 postscript figures (included), Latex 3.0, uses aps.sty, to appear in Phys. Rev. E (1999

    Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel

    Get PDF
    Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues

    Low-surface energy surfactants with branched hydrocarbon architectures

    Get PDF
    International audienceSurface tensiometry and small-angle neutron scattering have been used to characterize a new class of low-surface energy surfactants (LSESs), "hedgehog" surfactants. These surfactants are based on highly branched hydrocarbon (HC) chains as replacements for environmentally hazardous fluorocarbon surfactants and polymers. Tensiometric analyses indicate that a subtle structural modification in the tails and headgroup results in significant effects on limiting surface tensions γcmc at the critical micelle concentration: a higher level of branching and an increased counterion size promote an effective reduction of surface tension to low values for HC surfactants (γcmc 24 mN m-1). These LSESs present a new class of potentially very important materials, which form lamellar aggregates in aqueous solutions independent of dilution

    Structural studies of thermally stable, combustion-resistant polymer composites

    Get PDF
    Composites of the industrially important polymer, poly(methyl methacrylate) (PMMA), were prepared by free-radical polymerization of MMA with varying amounts (1–30 wt. %) of sodium dioctylsulfosuccinate (Aerosol OT or AOT) surfactant added to the reaction mixture. The composites with AOT incorporated show enhanced resistance to thermal degradation compared to pure PMMA homopolymer, and micro-cone combustion calorimetry measurements also show that the composites are combustion-resistant. The physical properties of the polymers, particularly at low concentrations of surfactant, are not significantly modified by the incorporation of AOT, whereas the degradation is modified considerably for even the smallest concentration of AOT (1 wt. %). Structural analyses over very different lengthscales were performed. X-ray scattering was used to determine nm-scale structure, and scanning electron microscopy was used to determine μm-scale structure. Two self-assembled species were observed: large phase-separated regions of AOT using electron microscopy and regions of hexagonally packed rods of AOT using X-ray scattering. Therefore, the combustion resistance is observed whenever AOT self-assembles. These results demonstrate a promising method of physically incorporating a small organic molecule to obtain a highly thermally stable and combustion-resistant material without significantly changing the properties of the polymer
    • …
    corecore