78 research outputs found

    Vibrio cholerae Pathogenic Clones

    Get PDF
    We resolved the relationships between 2 pandemic clones of Vibrio cholerae. Using 26 housekeeping genes, we showed that the US Gulf clone, the Australian clone, and 3 El Tor strains isolated before the seventh pandemic were related to the seventh pandemic clone. The sixth pandemic clone was well separated from them

    Molecular Epidemiology of O139 Vibrio cholerae: Mutation, Lateral Gene Transfer, and Founder Flush

    Get PDF
    Vibrio cholerae in O-group 139 was first isolated in 1992 and by 1993 had been found throughout the Indian subcontinent. This epidemic expansion probably resulted from a single source after a lateral gene transfer (LGT) event that changed the serotype of an epidemic V. cholerae O1 El Tor strain to O139. However, some studies found substantial genetic diversity, perhaps caused by multiple origins. To further explore the relatedness of O139 strains, we analyzed nine sequenced loci from 96 isolates from patients at the Infectious Diseases Hospital, Calcutta, from 1992 to 2000. We found 64 novel alleles distributed among 51 sequence types. LGT events produced three times the number of nucleotide changes compared to mutation. In contrast to the traditional concept of epidemic spread of a homogeneous clone, the establishment of variant alleles generated by LGT during the rapid expansion of a clonal bacterial population may be a paradigm in infections and epidemics

    Multiple-Locus Variable-Number Tandem-Repeat Analysis of Pathogenic Yersinia enterocolitica in China

    Get PDF
    The predominant bioserotypes of pathogenic Yersinia enterocolitica in China are 2/O: 9 and 3/O: 3; no pathogenic O: 8 strains have been found to date. Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA) based on seven loci was able to distinguish 104 genotypes among 218 pathogenic Y. enterocolitica isolates in China and from abroad, showing a high resolution. The major pathogenic serogroups in China, O: 3 and O: 9, were divided into two clusters based on MLVA genotyping. The different distribution of Y. enterocolitica MLVA genotypes maybe due to the recent dissemination of specific clones of 2/O: 9 and 3/O: 3 strains in China. MLVA was a helpful tool for bacterial pathogen surveillance and investigation of pathogenic Y. enterocolitica outbreaks

    Clonal Differences between Non-Typhoidal Salmonella (NTS) Recovered from Children and Animals Living in Close Contact in The Gambia

    Get PDF
    Salmonellosis is a neglected tropical disease causing serious dysentery and septicaemia particularly in young infants, elderly and immunocompromised individuals such as HIV patients and associated with substantial mortality in developing countries. Salmonellosis also constitutes a major public health problem as it is considered the most widespread bacterial zoonosis of food origin throughout the world. Many epidemiological data exist from developed countries concerning transmission of Non-Typhoidal Salmonella (NTS) but few are available from developing countries. In addition few studies in sub-Saharan Africa have considered the interface between humans and their environment in relation to animals present in the household and food hygiene. This study describes the prevalence of NTS among fourteen Gambian children and 210 domestic animals living in close proximity (household) to the children in a rural setting in The Gambia. We found that the domestic animals living in the same household as patients carried different NTS serovar and genotypes; indicating that zoonotic transmission does not occur in our setting. This study provides baseline data for future studies of transmission of NTS in rural Africa

    Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species
    corecore